Prism_8


Introduction

समतलीय सतहहरूले बनेको ठोस वस्तु प्रिज्म हो । यसमा दुई प्रकारका सतह हुन्छन् । माथिल्लो र तल्लो समानान्तर र अनुरूप सतहहरूलाई प्रिज्मको आधार भनिन्छ । आधारबाहेकका सतहहरूलाई छड्के सतह भनिन्छ । प्रिज्मको नाम यसको आधारको आकारअनुसार हुन्छ, जस्तैः प्रिज्मको आधार त्रिभुज भएमा त्रिभुजाकार प्रिज्म, प्रिज्मको आधार आयत भएमा आयातकार प्रिज्म ।

A prism is a polyhedron, with two parallel identical bases facing each other. The other faces of prism are always parallelograms.
Teacher can discuss that, a prism can only have polygon shapes but not the circular shape. Therefore, a prism has:
  1. identical ends (bases)
  2. flat faces (parallelograms)
  3. the same cross section (bases) all along its length
  4. An altitude of a prism is a perpendicular segment that joins the planes of the bases. The height \(h\) of a prism is the length of an altitude.
In this definition
  1. Vertex (plural: vertices): A corner point where two or more edges meet.
  2. Edge: A line segment where two faces meet.
  3. Face: A flat surface of a solid (3D) shape.
Solid Vertices (V) Edges (E) Faces (F) V-E+F=
Triangular Prism 6 9 5 2
Square Base Prism 8 12 6 2
Cube 8 12 6 2
Cuboid 8 12 6 2
Triangular Pyramid 4 6 4 2
Square Base Pyramid 5 8 5 2
Tetrahedron 4 6 4 2


Triangular Prism

A triangular prism is a three-dimensional solid shape that has:
  1. Two identical triangular bases
  2. Three rectangular lateral faces connecting the corresponding sides of the triangles
  3. 5 faces in total (2 triangles + 3 rectangles)
  4. 6 vertices (corner points)
  5. 9 edges (line segments where faces meet)
It is called a prism because it has the same cross-section along its entire length—any slice parallel to the triangular bases will also be a triangle congruent to the base.

Enter the correct number of Vertices (V), Edges (E), and Faces (F) for a triangular prism.

Then check if Euler's formula holds: V − E + F = 2










माथी चित्रमा त्रिभुजाकार आधार भएका प्रिज्म दिइएको छ । उक्त चित्रको अवलोकन गरी सोधिएका प्रश्नको उत्तर दिनुहोस्ः

  1. त्रिभुजाकार आधार भएका प्रिज्मका सबै सतहको नाम लेख्नुहोस् ।
  2. त्रिभुजाकार आधार भएका प्रिज्ममा कुन कुन सतह अनुरूप छन् ?
  3. त्रिभुजाकार आधार भएका प्रिज्ममा किनारा, सतह र शीर्षबिन्दुको सम्बन्ध लेख्नुहोस् ।

Rectangular Prism

A rectangular prism is a three-dimensional solid shape that has:
  1. Two identical rectangular bases
  2. Four rectangular lateral faces connecting the corresponding sides of the bases
  3. 6 faces in total (all rectangles)
  4. 8 vertices (corner points)
  5. 12 edges (line segments where faces meet)
It is called a prism because it has the same cross-section along its entire length—any slice parallel to the rectangular bases will also be a rectangle congruent to the base.

Enter the correct number of Vertices (V), Edges (E), and Faces (F) for a rectangular prism.

Then check if Euler's formula holds: V − E + F = 2










माथी चित्रमा आयताकार आधार भएका प्रिज्म दिइएको छ । उक्त चित्रको अवलोकन गरी सोधिएका प्रश्नको उत्तर दिनुहोस्:

  1. आयताकार आधार भएका प्रिज्मका सबै सतहको नाम लेख्नुहोस् ।
  2. आयताकार आधार भएका प्रिज्ममा कुन कुन सतह अनुरूप छन् ?
  3. आयताकार आधार भएका प्रिज्ममा किनारा, सतह र शीर्षबिन्दुको सम्बन्ध लेख्नुहोस् ।
  1. Write the name of the solid object which has the given net, and draw the figure of the solid.
  2. Write the name of the solid object which has the given net, and draw the figure of the solid.
  3. Write the name of the solid object which has the given net, and draw the figure of the solid.
  4. Name the base surface and triangular faces of the given pyramid.
  5. Write the name of the solid object which has the given net, and draw the figure of the solid.
  6. Write the name of the solid object which has the given net, and draw the figure of the solid.
  7. Write the name of the solid object which has the given net, and draw the figure of the solid.
  8. Write the name of the solid object which has the given net, and draw the figure of the solid.
  9. Draw the figure and net of a cube.
  10. Draw the net of a cuboid.
  11. Draw the net of a cylinder.
  12. Draw the net of a tetrahedron.
  13. Draw the net of a cone.
  14. Draw the net of a square-based pyramid.

No comments:

Post a Comment