म.स. र ल.स. (HCF and LCM)
For Q.No.8 (a) in BLE Examination
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( 2ab^2 \) and \( 4a^2b \) [1A]
- म.स. निकाल्नुहोस् (Find the HCF of): \( (x + 3)(x - 5) \), \( (x - 5)(x + 6) \) [1A]
- म.स. निकाल्नुहोस् (Find the HCF of): \( a^2b \), \( ab^2c \), \( a^2b^2c \) [1A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( x^2 + 7x + 10 \), \( x^2 - x - 6 \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( 3x^3 - 15x^2 \), \( 2x^3 - 50x \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( a^2 - 4 \), \( a^2 + 5a + 6 \) [2A]
- म.स. निकाल्नुहोस् (Find the HCF of): \( 5x^2 - 125 \), \( x^2 - 10x + 25 \) and \( 2x^2 - 10x \) [2A]
- म.स. निकाल्नुहोस् (Find the HCF of): \( x^3 + 7x^2 + 12x \), \( x^3 + 64 \) and \( 3x^2 + 27x + 60 \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find HCF of): \( y^2 - 5y + 6 \), \( y^3 - 8 \), \( 2y^2 - 8 \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( m^3 - 9m \), \( m^2 + m - 6 \), \( m^4 + 27m \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( 4a^3 - 9a \), \( 6a^2 + 9a \), \( 6a^3 + 5a^2 - 6a \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( p^3 + 2p^2 - 15p \), \( p^2 - 7p + 12 \) and \( 3p^2 - 27 \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( x^3 + 6x^2 - 4x - 24 \), \( x^2 + 5x + 6 \) and \( x^2 - 4 \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( a^2 - 25 \), \( a^2 - 6a + 5 \) and \( (a - 5)^2 \) [2A]
- म.स. पत्ता लगाउनुहोस् (Find the HCF of): \( 2x^2 - 8 \), \( x^2 - 4x + 4 \) and \( x^2 - 3x + 2 \) [2A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( 6ab^2 \) and \( 3ab \) [1A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( a^3b^2 \) and \( a^2b^3 \) [1A]
- ल.स. निकाल्नुहोस् (Find the LCM of): \( a + b \), \( a^2 - b^2 \) [1A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( a^2 - 1 \), \( a^2 + a - 2 \) [2A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( x^2 + x - 20 \), \( x^2 - 25 \) [2A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( 4a - 24 \), \( a^2 - 36 \) and \( a^2 - 3a - 18 \) [3A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( (x + 2)^2 \), \( x^2 + 6x + 8 \) and \( x^2 + 7x + 10 \) [3A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( x^2 + 3x - 10 \), \( x^2 - 6x + 8 \) and \( x^2 + x - 20 \) [3A]
- ल.स. पत्ता लगाउनुहोस् (Find the LCM of): \( a^2 + 6a + 8 \), \( a^2 + 9a + 20 \) and \( a^2 + 7a + 10 \) [3A]
- म.स. र ल.स. पत्ता लगाउनुहोस् (Find the HCF and LCM of): \( x^2 - 5x + 6 \) and \( x^3 - 4x \) [3A]
- म.स. र ल.स. पत्ता लगाउनुहोस् (Find the HCF and LCM of): \( x^2 - 25 \) and \( x^2 - 9x + 20 \) [3A]
- म.स. र ल.स. पत्ता लगाउनुहोस् (Find the HCF and LCM of): \( x^2 + x - 6 \) and \( x^2 - 9 \) [3A]
- म.स. र ल.स. पत्ता लगाउनुहोस् (Find the HCF and LCM of): \( x^2 - z^2 + y^2 + 2xy \) and \( x^2 - y^2 + z^2 - 2xz \) [3A]
The Given Expressions are
\( 2ab^2 = \boxed{2} \cdot \boxed{a} \cdot \boxed{b} \cdot b \)
\( 4a^2b = \boxed{2} \cdot 2 \cdot \boxed{a} \cdot a \cdot \boxed{b} \)
So, HCF is
HCF = \( 2 \cdot a \cdot b \)
orHCF =\( 2ab \)
\( 2ab^2 = \boxed{2} \cdot \boxed{a} \cdot \boxed{b} \cdot b \)
\( 4a^2b = \boxed{2} \cdot 2 \cdot \boxed{a} \cdot a \cdot \boxed{b} \)
So, HCF is
HCF = \( 2 \cdot a \cdot b \)
orHCF =\( 2ab \)
The Given Expressions are
1st Expression = \( (x + 3) \cdot \boxed{(x - 5)} \)
2nd Expression = \( \boxed{(x - 5)} \cdot (x + 6) \)
So, HCF is
HCF = \( (x - 5) \)
1st Expression = \( (x + 3) \cdot \boxed{(x - 5)} \)
2nd Expression = \( \boxed{(x - 5)} \cdot (x + 6) \)
So, HCF is
HCF = \( (x - 5) \)
The Given Expressions are
1st Expression = \( a^2b = \boxed{a} \cdot a \cdot \boxed{b} \)
2nd Expression = \( ab^2c = \boxed{a} \cdot \boxed{b} \cdot b \cdot c \)
3rd Expression = \( a^2b^2c = \boxed{a} \cdot a \cdot \boxed{b} \cdot b \cdot c \)
So, HCF is
HCF = \( a \cdot b =ab \)
1st Expression = \( a^2b = \boxed{a} \cdot a \cdot \boxed{b} \)
2nd Expression = \( ab^2c = \boxed{a} \cdot \boxed{b} \cdot b \cdot c \)
3rd Expression = \( a^2b^2c = \boxed{a} \cdot a \cdot \boxed{b} \cdot b \cdot c \)
So, HCF is
HCF = \( a \cdot b =ab \)
The Given Expressions are
1st Expression = \( x^2 + 7x + 10 \)
or1st Expression = \( x^2 + 5x + 2x + 10 \)
or1st Expression = \( x(x + 5) + 2(x + 5) \)
or1st Expression = \( (x + 5) \cdot \boxed{(x + 2)} \)
Next
2nd Expression = \( x^2 - x - 6 \)
or2nd Expression =\( x^2 - 3x + 2x - 6 \)
or2nd Expression =\( x(x - 3) + 2(x - 3) \)
or2nd Expression =\( (x - 3) \cdot \boxed{(x + 2)} \)
So, HCF is
HCF = \( x + 2 \)
1st Expression = \( x^2 + 7x + 10 \)
or1st Expression = \( x^2 + 5x + 2x + 10 \)
or1st Expression = \( x(x + 5) + 2(x + 5) \)
or1st Expression = \( (x + 5) \cdot \boxed{(x + 2)} \)
Next
2nd Expression = \( x^2 - x - 6 \)
or2nd Expression =\( x^2 - 3x + 2x - 6 \)
or2nd Expression =\( x(x - 3) + 2(x - 3) \)
or2nd Expression =\( (x - 3) \cdot \boxed{(x + 2)} \)
So, HCF is
HCF = \( x + 2 \)
The Given Expressions are
1st Expression = \( 3x^3 - 15x^2 \)
or1st Expression = \( 3 \cdot \boxed{x} \cdot x \cdot \boxed{(x - 5)} \)
Next
2nd Expression = \( 2x^3 - 50x \)
or2nd Expression =\( 2x(x^2 - 25) \)
or2nd Expression =\( 2 \cdot \boxed{x} \cdot (x^2 - 5^2) \)
or2nd Expression =\( 2 \cdot \boxed{x} \cdot \boxed{(x - 5)} \cdot (x + 5) \)
So, HCF is
HCF = \( x(x - 5) \)
1st Expression = \( 3x^3 - 15x^2 \)
or1st Expression = \( 3 \cdot \boxed{x} \cdot x \cdot \boxed{(x - 5)} \)
Next
2nd Expression = \( 2x^3 - 50x \)
or2nd Expression =\( 2x(x^2 - 25) \)
or2nd Expression =\( 2 \cdot \boxed{x} \cdot (x^2 - 5^2) \)
or2nd Expression =\( 2 \cdot \boxed{x} \cdot \boxed{(x - 5)} \cdot (x + 5) \)
So, HCF is
HCF = \( x(x - 5) \)
The Given Expressions are
1st Expression = \( a^2 - 4 \)
or1st Expression = \( a^2 - 2^2 \)
or1st Expression = \( (a - 2) \cdot \boxed{(a + 2)} \)
Next
2nd Expression = \( a^2 + 5a + 6 \)
or2nd Expression =\( a^2 + 3a + 2a + 6 \)
or2nd Expression =\( a(a + 3) + 2(a + 3) \)
or2nd Expression =\( (a + 3) \cdot \boxed{(a + 2)} \)
So, HCF is
HCF = \( a + 2 \)
1st Expression = \( a^2 - 4 \)
or1st Expression = \( a^2 - 2^2 \)
or1st Expression = \( (a - 2) \cdot \boxed{(a + 2)} \)
Next
2nd Expression = \( a^2 + 5a + 6 \)
or2nd Expression =\( a^2 + 3a + 2a + 6 \)
or2nd Expression =\( a(a + 3) + 2(a + 3) \)
or2nd Expression =\( (a + 3) \cdot \boxed{(a + 2)} \)
So, HCF is
HCF = \( a + 2 \)
The Given Expressions are
1st Expression = \( 5x^2 - 125 \)
or1st Expression = \( 5(x^2 - 25) \)
or1st Expression = \( 5 \cdot (x + 5) \cdot \boxed{(x - 5)} \)
Next
2nd Expression = \( x^2 - 10x + 25 \)
or2nd Expression =\( x^2 - 5x - 5x + 25 \)
or2nd Expression =\( x(x - 5) - 5(x - 5) \)
or2nd Expression =\( \boxed{(x - 5)} \cdot (x - 5) \)
Next
3rd Expression = \( 2x^2 - 10x \)
or3rd Expression =\( 2x(x - 5) \)
or3rd Expression =\( 2 \cdot x \cdot \boxed{(x - 5)} \)
So, HCF is
HCF = \( x - 5 \)
1st Expression = \( 5x^2 - 125 \)
or1st Expression = \( 5(x^2 - 25) \)
or1st Expression = \( 5 \cdot (x + 5) \cdot \boxed{(x - 5)} \)
Next
2nd Expression = \( x^2 - 10x + 25 \)
or2nd Expression =\( x^2 - 5x - 5x + 25 \)
or2nd Expression =\( x(x - 5) - 5(x - 5) \)
or2nd Expression =\( \boxed{(x - 5)} \cdot (x - 5) \)
Next
3rd Expression = \( 2x^2 - 10x \)
or3rd Expression =\( 2x(x - 5) \)
or3rd Expression =\( 2 \cdot x \cdot \boxed{(x - 5)} \)
So, HCF is
HCF = \( x - 5 \)
The Given Expressions are
1st Expression = \( x^3 + 7x^2 + 12x \)
or1st Expression = \( x(x^2 + 7x + 12) \)
or1st Expression = \( x(x^2 + 4x + 3x + 12) \)
or1st Expression = \( x[x(x + 4) + 3(x + 4)] \)
or1st Expression = \( x \cdot (x + 3) \cdot \boxed{(x + 4)} \)
Next
2nd Expression = \( x^3 + 64 \)
or2nd Expression =\( x^3 + 4^3 \)
or2nd Expression =\( (x + 4)(x^2 - 4x + 4^2) \)
or2nd Expression =\( \boxed{(x + 4)} \cdot (x^2 - 4x + 16) \)
Next
3rd Expression = \( 3x^2 + 27x + 60 \)
or3rd Expression =\( 3(x^2 + 9x + 20) \)
or3rd Expression =\( 3(x^2 + 5x + 4x + 20) \)
or3rd Expression =\( 3[x(x + 5) + 4(x + 5)] \)
or3rd Expression =\( 3 \cdot (x + 5) \cdot \boxed{(x + 4)} \)
So, HCF is
HCF = \( x + 4 \)
1st Expression = \( x^3 + 7x^2 + 12x \)
or1st Expression = \( x(x^2 + 7x + 12) \)
or1st Expression = \( x(x^2 + 4x + 3x + 12) \)
or1st Expression = \( x[x(x + 4) + 3(x + 4)] \)
or1st Expression = \( x \cdot (x + 3) \cdot \boxed{(x + 4)} \)
Next
2nd Expression = \( x^3 + 64 \)
or2nd Expression =\( x^3 + 4^3 \)
or2nd Expression =\( (x + 4)(x^2 - 4x + 4^2) \)
or2nd Expression =\( \boxed{(x + 4)} \cdot (x^2 - 4x + 16) \)
Next
3rd Expression = \( 3x^2 + 27x + 60 \)
or3rd Expression =\( 3(x^2 + 9x + 20) \)
or3rd Expression =\( 3(x^2 + 5x + 4x + 20) \)
or3rd Expression =\( 3[x(x + 5) + 4(x + 5)] \)
or3rd Expression =\( 3 \cdot (x + 5) \cdot \boxed{(x + 4)} \)
So, HCF is
HCF = \( x + 4 \)
The Given Expressions are
1st Expression = \( y^2 - 5y + 6 \)
or1st Expression = \( y^2 - 3y - 2y + 6 \)
or1st Expression = \( y(y - 3) - 2(y - 3) \)
or1st Expression = \( (y - 3) \cdot \boxed{(y - 2)} \)
Next
2nd Expression = \( y^3 - 8 \)
or2nd Expression =\( y^3 - 2^3 \)
or2nd Expression =\( (y - 2)(y^2 + 2y + 4) \)
or2nd Expression =\( \boxed{(y - 2)} \cdot (y^2 + 2y + 4) \)
Next
3rd Expression = \( 2y^2 - 8 \)
or3rd Expression =\( 2(y^2 - 4) \)
or3rd Expression =\( 2(y - 2)(y + 2) \)
or3rd Expression =\( 2 \cdot \boxed{(y - 2)} \cdot (y + 2) \)
So, HCF is
HCF = \( y - 2 \)
1st Expression = \( y^2 - 5y + 6 \)
or1st Expression = \( y^2 - 3y - 2y + 6 \)
or1st Expression = \( y(y - 3) - 2(y - 3) \)
or1st Expression = \( (y - 3) \cdot \boxed{(y - 2)} \)
Next
2nd Expression = \( y^3 - 8 \)
or2nd Expression =\( y^3 - 2^3 \)
or2nd Expression =\( (y - 2)(y^2 + 2y + 4) \)
or2nd Expression =\( \boxed{(y - 2)} \cdot (y^2 + 2y + 4) \)
Next
3rd Expression = \( 2y^2 - 8 \)
or3rd Expression =\( 2(y^2 - 4) \)
or3rd Expression =\( 2(y - 2)(y + 2) \)
or3rd Expression =\( 2 \cdot \boxed{(y - 2)} \cdot (y + 2) \)
So, HCF is
HCF = \( y - 2 \)
The Given Expressions are
1st Expression = \( m^3 - 9m \)
or1st Expression = \( m(m^2 - 9) \)
or1st Expression = \( m \cdot (m + 3) \cdot (m - 3) \)
Next
2nd Expression = \( m^2 + m - 6 \)
or2nd Expression =\( m^2 + 3m - 2m - 6 \)
or2nd Expression =\( m(m + 3) - 2(m + 3) \)
or2nd Expression =\( \boxed{(m + 3)} \cdot (m - 2) \)
Next
3rd Expression = \( m^4 + 27m \)
or3rd Expression =\( m(m^3 + 27) \)
or3rd Expression =\( m(m^3 + 3^3) \)
or3rd Expression =\( m \cdot \boxed{(m + 3)} \cdot (m^2 - 3m + 9) \)
So, HCF is
HCF = \( m + 3 \)
1st Expression = \( m^3 - 9m \)
or1st Expression = \( m(m^2 - 9) \)
or1st Expression = \( m \cdot (m + 3) \cdot (m - 3) \)
Next
2nd Expression = \( m^2 + m - 6 \)
or2nd Expression =\( m^2 + 3m - 2m - 6 \)
or2nd Expression =\( m(m + 3) - 2(m + 3) \)
or2nd Expression =\( \boxed{(m + 3)} \cdot (m - 2) \)
Next
3rd Expression = \( m^4 + 27m \)
or3rd Expression =\( m(m^3 + 27) \)
or3rd Expression =\( m(m^3 + 3^3) \)
or3rd Expression =\( m \cdot \boxed{(m + 3)} \cdot (m^2 - 3m + 9) \)
So, HCF is
HCF = \( m + 3 \)
The Given Expressions are
1st Expression = \( 4a^3 - 9a \)
or1st Expression = \( a(4a^2 - 9) \)
or1st Expression = \( a(2a - 3) \cdot \boxed{(2a + 3)} \)
Next
2nd Expression = \( 6a^2 + 9a \)
or2nd Expression =\( 3a(2a + 3) \)
or2nd Expression =\( 3 \cdot \boxed{a} \cdot \boxed{(2a + 3)} \)
Next
3rd Expression = \( 6a^3 + 5a^2 - 6a \)
or3rd Expression =\( a(6a^2 + 5a - 6) \)
or3rd Expression =\( a(6a^2 + 9a - 4a - 6) \)
or3rd Expression =\( a[3a(2a + 3) - 2(2a + 3)] \)
or3rd Expression =\( \boxed{a} \cdot (3a - 2) \cdot \boxed{(2a + 3)} \)
So, HCF is
HCF = \( a(2a + 3) \)
1st Expression = \( 4a^3 - 9a \)
or1st Expression = \( a(4a^2 - 9) \)
or1st Expression = \( a(2a - 3) \cdot \boxed{(2a + 3)} \)
Next
2nd Expression = \( 6a^2 + 9a \)
or2nd Expression =\( 3a(2a + 3) \)
or2nd Expression =\( 3 \cdot \boxed{a} \cdot \boxed{(2a + 3)} \)
Next
3rd Expression = \( 6a^3 + 5a^2 - 6a \)
or3rd Expression =\( a(6a^2 + 5a - 6) \)
or3rd Expression =\( a(6a^2 + 9a - 4a - 6) \)
or3rd Expression =\( a[3a(2a + 3) - 2(2a + 3)] \)
or3rd Expression =\( \boxed{a} \cdot (3a - 2) \cdot \boxed{(2a + 3)} \)
So, HCF is
HCF = \( a(2a + 3) \)
The Given Expressions are
1st Expression = \( p^3 + 2p^2 - 15p \)
or1st Expression = \( p(p^2 + 2p - 15) \)
or1st Expression = \( p(p^2 + 5p - 3p - 15) \)
or1st Expression = \( p[p(p + 5) - 3(p + 5)] \)
or1st Expression = \( p \cdot (p + 5) \cdot \boxed{(p - 3)} \)
Next
2nd Expression = \( p^2 - 7p + 12 \)
or2nd Expression =\( p^2 - 4p - 3p + 12 \)
or2nd Expression =\( p(p - 4) - 3(p - 4) \)
or2nd Expression =\( (p - 4) \cdot \boxed{(p - 3)} \)
Next
3rd Expression = \( 3p^2 - 27 \)
or3rd Expression =\( 3(p^2 - 9) \)
or3rd Expression =\( 3(p^2 - 3^2) \)
or3rd Expression =\( 3 \cdot (p + 3) \cdot \boxed{(p - 3)} \)
So, HCF is
HCF = \( p - 3 \)
1st Expression = \( p^3 + 2p^2 - 15p \)
or1st Expression = \( p(p^2 + 2p - 15) \)
or1st Expression = \( p(p^2 + 5p - 3p - 15) \)
or1st Expression = \( p[p(p + 5) - 3(p + 5)] \)
or1st Expression = \( p \cdot (p + 5) \cdot \boxed{(p - 3)} \)
Next
2nd Expression = \( p^2 - 7p + 12 \)
or2nd Expression =\( p^2 - 4p - 3p + 12 \)
or2nd Expression =\( p(p - 4) - 3(p - 4) \)
or2nd Expression =\( (p - 4) \cdot \boxed{(p - 3)} \)
Next
3rd Expression = \( 3p^2 - 27 \)
or3rd Expression =\( 3(p^2 - 9) \)
or3rd Expression =\( 3(p^2 - 3^2) \)
or3rd Expression =\( 3 \cdot (p + 3) \cdot \boxed{(p - 3)} \)
So, HCF is
HCF = \( p - 3 \)
The Given Expressions are
1st Expression = \( x^3 + 6x^2 - 4x - 24 \)
or1st Expression = \( x^2(x + 6) - 4(x + 6) \)
or1st Expression = \( (x^2 - 4)(x + 6) \)
or1st Expression = \( (x - 2) \cdot \boxed{(x + 2)} \cdot (x + 6) \)
Next
2nd Expression = \( x^2 + 5x + 6 \)
or2nd Expression =\( x^2 + 3x + 2x + 6 \)
or2nd Expression =\( x(x + 3) + 2(x + 3) \)
or2nd Expression =\( (x + 3) \cdot \boxed{(x + 2)} \)
Next
3rd Expression = \( x^2 - 4 \)
or3rd Expression =\( x^2 - 2^2 \)
or3rd Expression =\( (x - 2) \cdot \boxed{(x + 2)} \)
So, HCF is
HCF = \( x + 2 \)
1st Expression = \( x^3 + 6x^2 - 4x - 24 \)
or1st Expression = \( x^2(x + 6) - 4(x + 6) \)
or1st Expression = \( (x^2 - 4)(x + 6) \)
or1st Expression = \( (x - 2) \cdot \boxed{(x + 2)} \cdot (x + 6) \)
Next
2nd Expression = \( x^2 + 5x + 6 \)
or2nd Expression =\( x^2 + 3x + 2x + 6 \)
or2nd Expression =\( x(x + 3) + 2(x + 3) \)
or2nd Expression =\( (x + 3) \cdot \boxed{(x + 2)} \)
Next
3rd Expression = \( x^2 - 4 \)
or3rd Expression =\( x^2 - 2^2 \)
or3rd Expression =\( (x - 2) \cdot \boxed{(x + 2)} \)
So, HCF is
HCF = \( x + 2 \)
The Given Expressions are
1st Expression = \( a^2 - 25 \)
or1st Expression = \( a^2 - 5^2 \)
or1st Expression = \( (a + 5) \cdot \boxed{(a - 5)} \)
Next
2nd Expression = \( a^2 - 6a + 5 \)
or2nd Expression =\( a^2 - 5a - a + 5 \)
or2nd Expression =\( a(a - 5) - 1(a - 5) \)
or2nd Expression =\( (a - 1) \cdot \boxed{(a - 5)} \)
Next
3rd Expression = \( (a - 5)^2 \)
or3rd Expression =\( \boxed{(a - 5)} \cdot (a - 5) \)
So, HCF is
HCF = \( a - 5 \)
1st Expression = \( a^2 - 25 \)
or1st Expression = \( a^2 - 5^2 \)
or1st Expression = \( (a + 5) \cdot \boxed{(a - 5)} \)
Next
2nd Expression = \( a^2 - 6a + 5 \)
or2nd Expression =\( a^2 - 5a - a + 5 \)
or2nd Expression =\( a(a - 5) - 1(a - 5) \)
or2nd Expression =\( (a - 1) \cdot \boxed{(a - 5)} \)
Next
3rd Expression = \( (a - 5)^2 \)
or3rd Expression =\( \boxed{(a - 5)} \cdot (a - 5) \)
So, HCF is
HCF = \( a - 5 \)
The Given Expressions are
1st Expression = \( 2x^2 - 8 \)
or1st Expression = \( 2(x^2 - 4) \)
or1st Expression = \( 2(x^2 - 2^2) \)
or1st Expression = \( 2 \cdot (x + 2) \cdot \boxed{(x - 2)} \)
Next
2nd Expression = \( x^2 - 4x + 4 \)
or2nd Expression =\( x^2 - 2x - 2x + 4 \)
or2nd Expression =\( x(x - 2) - 2(x - 2) \)
or2nd Expression =\( \boxed{(x - 2)} \cdot (x - 2) \)
Next
3rd Expression = \( x^2 - 3x + 2 \)
or3rd Expression =\( x^2 - 2x - x + 2 \)
or3rd Expression =\( x(x - 2) - 1(x - 2) \)
or3rd Expression =\( (x - 1) \cdot \boxed{(x - 2)} \)
So, HCF is
HCF = \( x - 2 \)
1st Expression = \( 2x^2 - 8 \)
or1st Expression = \( 2(x^2 - 4) \)
or1st Expression = \( 2(x^2 - 2^2) \)
or1st Expression = \( 2 \cdot (x + 2) \cdot \boxed{(x - 2)} \)
Next
2nd Expression = \( x^2 - 4x + 4 \)
or2nd Expression =\( x^2 - 2x - 2x + 4 \)
or2nd Expression =\( x(x - 2) - 2(x - 2) \)
or2nd Expression =\( \boxed{(x - 2)} \cdot (x - 2) \)
Next
3rd Expression = \( x^2 - 3x + 2 \)
or3rd Expression =\( x^2 - 2x - x + 2 \)
or3rd Expression =\( x(x - 2) - 1(x - 2) \)
or3rd Expression =\( (x - 1) \cdot \boxed{(x - 2)} \)
So, HCF is
HCF = \( x - 2 \)
The Given Expressions are
1st Expression = \( 6ab^2 = 2 \cdot 3 \cdot a \cdot b^2 \)
2nd Expression = \( 3ab = 3 \cdot a \cdot b \)
To find the LCM, we take the highest power of all factors.
So, LCM is
LCM = \( 2 \cdot 3 \cdot a \cdot b^2 = 6ab^2 \)
1st Expression = \( 6ab^2 = 2 \cdot 3 \cdot a \cdot b^2 \)
2nd Expression = \( 3ab = 3 \cdot a \cdot b \)
To find the LCM, we take the highest power of all factors.
So, LCM is
LCM = \( 2 \cdot 3 \cdot a \cdot b^2 = 6ab^2 \)
The Given Expressions are
1st Expression = \( a^3b^2 = \boxed{a^3} \cdot b^2 \)
2nd Expression = \( a^2b^3 = a^2 \cdot \boxed{b^3} \)
To find the LCM, we take the highest power of all factors.
So, LCM is
LCM = \( \boxed{a^3} \cdot \boxed{b^3} = a^3b^3 \)
1st Expression = \( a^3b^2 = \boxed{a^3} \cdot b^2 \)
2nd Expression = \( a^2b^3 = a^2 \cdot \boxed{b^3} \)
To find the LCM, we take the highest power of all factors.
So, LCM is
LCM = \( \boxed{a^3} \cdot \boxed{b^3} = a^3b^3 \)
The Given Expressions are
1st Expression = \( \boxed{(a + b)} \)
2nd Expression = \( a^2 - b^2 = (a + b) \cdot \boxed{(a - b)} \)
To find the LCM, we take all the factors with their highest powers.
So, LCM is
LCM = \( (a + b)(a - b)=a^2 - b^2 \)
1st Expression = \( \boxed{(a + b)} \)
2nd Expression = \( a^2 - b^2 = (a + b) \cdot \boxed{(a - b)} \)
To find the LCM, we take all the factors with their highest powers.
So, LCM is
LCM = \( (a + b)(a - b)=a^2 - b^2 \)
The Given Expressions are
1st Expression = \( a^2 - 1 \)
or1st Expression = \( a^2 - 1^2 \)
or1st Expression = \( \boxed{(a + 1)} \cdot \boxed{(a - 1)} \)
Next
2nd Expression = \( a^2 + a - 2 \)
or2nd Expression =\( a^2 + 2a - a - 2 \)
or2nd Expression =\( a(a + 2) - 1(a + 2) \)
or2nd Expression =\( (a - 1) \cdot \boxed{(a + 2)} \)
So, LCM is
LCM = \( (a + 1)(a - 1)(a + 2) \)
orLCM = \( (a^2 - 1)(a + 2) \)
1st Expression = \( a^2 - 1 \)
or1st Expression = \( a^2 - 1^2 \)
or1st Expression = \( \boxed{(a + 1)} \cdot \boxed{(a - 1)} \)
Next
2nd Expression = \( a^2 + a - 2 \)
or2nd Expression =\( a^2 + 2a - a - 2 \)
or2nd Expression =\( a(a + 2) - 1(a + 2) \)
or2nd Expression =\( (a - 1) \cdot \boxed{(a + 2)} \)
So, LCM is
LCM = \( (a + 1)(a - 1)(a + 2) \)
orLCM = \( (a^2 - 1)(a + 2) \)
The Given Expressions are
1st Expression = \( x^2 + x - 20 \)
or1st Expression = \( x^2 + 5x - 4x - 20 \)
or1st Expression = \( x(x + 5) - 4(x + 5) \)
or1st Expression = \( \boxed{(x + 5)} \cdot \boxed{(x - 4)} \)
Next
2nd Expression = \( x^2 - 25 \)
or2nd Expression =\( x^2 - 5^2 \)
or2nd Expression =\( (x + 5) \cdot \boxed{(x - 5)} \)
So, LCM is
LCM = \( (x + 5)(x - 4)(x - 5) \)
orLCM = \( (x^2 - 25)(x - 4) \)
1st Expression = \( x^2 + x - 20 \)
or1st Expression = \( x^2 + 5x - 4x - 20 \)
or1st Expression = \( x(x + 5) - 4(x + 5) \)
or1st Expression = \( \boxed{(x + 5)} \cdot \boxed{(x - 4)} \)
Next
2nd Expression = \( x^2 - 25 \)
or2nd Expression =\( x^2 - 5^2 \)
or2nd Expression =\( (x + 5) \cdot \boxed{(x - 5)} \)
So, LCM is
LCM = \( (x + 5)(x - 4)(x - 5) \)
orLCM = \( (x^2 - 25)(x - 4) \)
The Given Expressions are
1st Expression = \( 4a - 24 \)
or1st Expression = \( 4(a - 6) = \boxed{2^2} \cdot \boxed{(a - 6)} \)
Next
2nd Expression = \( a^2 - 36 \)
or2nd Expression =\( a^2 - 6^2 \)
or2nd Expression =\( (a - 6) \cdot \boxed{(a + 6)} \)
Next
3rd Expression = \( a^2 - 3a - 18 \)
or3rd Expression =\( a^2 - 6a + 3a - 18 \)
or3rd Expression =\( a(a - 6) + 3(a - 6) \)
or3rd Expression =\( (a - 6) \cdot \boxed{(a + 3)} \)
So, LCM is
LCM = \( 2^2(a - 6)(a + 6)(a + 3) \)
orLCM = \( 4(a^2 - 36)(a + 3) \)
1st Expression = \( 4a - 24 \)
or1st Expression = \( 4(a - 6) = \boxed{2^2} \cdot \boxed{(a - 6)} \)
Next
2nd Expression = \( a^2 - 36 \)
or2nd Expression =\( a^2 - 6^2 \)
or2nd Expression =\( (a - 6) \cdot \boxed{(a + 6)} \)
Next
3rd Expression = \( a^2 - 3a - 18 \)
or3rd Expression =\( a^2 - 6a + 3a - 18 \)
or3rd Expression =\( a(a - 6) + 3(a - 6) \)
or3rd Expression =\( (a - 6) \cdot \boxed{(a + 3)} \)
So, LCM is
LCM = \( 2^2(a - 6)(a + 6)(a + 3) \)
orLCM = \( 4(a^2 - 36)(a + 3) \)
The Given Expressions are
1st Expression = \( (x + 2)^2 = \boxed{(x + 2)^2} \)
Next
2nd Expression = \( x^2 + 6x + 8 \)
or2nd Expression =\( x^2 + 4x + 2x + 8 \)
or2nd Expression =\( x(x + 4) + 2(x + 4) \)
or2nd Expression =\( \boxed{(x + 4)} \cdot (x + 2) \)
Next
3rd Expression = \( x^2 + 7x + 10 \)
or3rd Expression =\( x^2 + 5x + 2x + 10 \)
or3rd Expression =\( x(x + 5) + 2(x + 5) \)
or3rd Expression =\( \boxed{(x + 5)} \cdot (x + 2) \)
So, LCM is
LCM = \( (x + 2)^2(x + 4)(x + 5) \)
1st Expression = \( (x + 2)^2 = \boxed{(x + 2)^2} \)
Next
2nd Expression = \( x^2 + 6x + 8 \)
or2nd Expression =\( x^2 + 4x + 2x + 8 \)
or2nd Expression =\( x(x + 4) + 2(x + 4) \)
or2nd Expression =\( \boxed{(x + 4)} \cdot (x + 2) \)
Next
3rd Expression = \( x^2 + 7x + 10 \)
or3rd Expression =\( x^2 + 5x + 2x + 10 \)
or3rd Expression =\( x(x + 5) + 2(x + 5) \)
or3rd Expression =\( \boxed{(x + 5)} \cdot (x + 2) \)
So, LCM is
LCM = \( (x + 2)^2(x + 4)(x + 5) \)
The Given Expressions are
1st Expression = \( x^2 + 3x - 10 \)
or1st Expression = \( x^2 + 5x - 2x - 10 \)
or1st Expression = \( x(x + 5) - 2(x + 5) \)
or1st Expression = \( \boxed{(x - 2)} \cdot \boxed{(x + 5)} \)
Next
2nd Expression = \( x^2 - 6x + 8 \)
or2nd Expression =\( x^2 - 4x - 2x + 8 \)
or2nd Expression =\( x(x - 4) - 2(x - 4) \)
or2nd Expression =\((x - 2) \cdot \boxed{(x - 4)} \)
Next
3rd Expression = \( x^2 + x - 20 \)
or3rd Expression =\( x^2 + 5x - 4x - 20 \)
or3rd Expression =\( x(x + 5) - 4(x + 5) \)
or3rd Expression =\( (x + 5) \cdot (x - 4) \)
So, LCM is
LCM = \( (x - 2)(x + 5)(x - 4) \)
1st Expression = \( x^2 + 3x - 10 \)
or1st Expression = \( x^2 + 5x - 2x - 10 \)
or1st Expression = \( x(x + 5) - 2(x + 5) \)
or1st Expression = \( \boxed{(x - 2)} \cdot \boxed{(x + 5)} \)
Next
2nd Expression = \( x^2 - 6x + 8 \)
or2nd Expression =\( x^2 - 4x - 2x + 8 \)
or2nd Expression =\( x(x - 4) - 2(x - 4) \)
or2nd Expression =\((x - 2) \cdot \boxed{(x - 4)} \)
Next
3rd Expression = \( x^2 + x - 20 \)
or3rd Expression =\( x^2 + 5x - 4x - 20 \)
or3rd Expression =\( x(x + 5) - 4(x + 5) \)
or3rd Expression =\( (x + 5) \cdot (x - 4) \)
So, LCM is
LCM = \( (x - 2)(x + 5)(x - 4) \)
The Given Expressions are
1st Expression = \( a^2 + 6a + 8 \)
or1st Expression = \( a^2 + 4a + 2a + 8 \)
or1st Expression = \( a(a + 4) + 2(a + 4) \)
or1st Expression = \( \boxed{(a + 4)} \cdot \boxed{(a + 2)} \)
Next
2nd Expression = \( a^2 + 9a + 20 \)
or2nd Expression =\( a^2 + 5a + 4a + 20 \)
or2nd Expression =\( a(a + 5) + 4(a + 5) \)
or2nd Expression =\( \boxed{(a + 5)} \cdot (a + 4) \)
Next
3rd Expression = \( a^2 + 7a + 10 \)
or3rd Expression =\( a^2 + 5a + 2a + 10 \)
or3rd Expression =\( a(a + 5) + 2(a + 5) \)
or3rd Expression =\( (a + 5) \cdot(a + 2) \)
So, LCM is
LCM = \( (a + 4)(a + 2)(a + 5) \)
1st Expression = \( a^2 + 6a + 8 \)
or1st Expression = \( a^2 + 4a + 2a + 8 \)
or1st Expression = \( a(a + 4) + 2(a + 4) \)
or1st Expression = \( \boxed{(a + 4)} \cdot \boxed{(a + 2)} \)
Next
2nd Expression = \( a^2 + 9a + 20 \)
or2nd Expression =\( a^2 + 5a + 4a + 20 \)
or2nd Expression =\( a(a + 5) + 4(a + 5) \)
or2nd Expression =\( \boxed{(a + 5)} \cdot (a + 4) \)
Next
3rd Expression = \( a^2 + 7a + 10 \)
or3rd Expression =\( a^2 + 5a + 2a + 10 \)
or3rd Expression =\( a(a + 5) + 2(a + 5) \)
or3rd Expression =\( (a + 5) \cdot(a + 2) \)
So, LCM is
LCM = \( (a + 4)(a + 2)(a + 5) \)
The Given Expressions are
1st Expression = \( x^2 - 5x + 6 \)
or1st Expression = \( x^2 - 3x - 2x + 6 \)
or1st Expression = \( x(x - 3) - 2(x - 3) \)
or1st Expression = \( \boxed{(x - 2)} \cdot (x - 3) \)
Next
2nd Expression = \( x^3 - 4x \)
or2nd Expression = \( x(x^2 - 4) \)
or2nd Expression = \( x \cdot (x^2 - 2^2) \)
or2nd Expression = \( x \cdot \boxed{(x - 2)} \cdot (x + 2) \)
So, HCF is
HCF = \( x - 2 \)
Next, LCM is
LCM = \( (x - 2)(x - 3) x(x + 2) \)
orLCM = \( x(x^2 - 4)(x - 3) \)
1st Expression = \( x^2 - 5x + 6 \)
or1st Expression = \( x^2 - 3x - 2x + 6 \)
or1st Expression = \( x(x - 3) - 2(x - 3) \)
or1st Expression = \( \boxed{(x - 2)} \cdot (x - 3) \)
Next
2nd Expression = \( x^3 - 4x \)
or2nd Expression = \( x(x^2 - 4) \)
or2nd Expression = \( x \cdot (x^2 - 2^2) \)
or2nd Expression = \( x \cdot \boxed{(x - 2)} \cdot (x + 2) \)
So, HCF is
HCF = \( x - 2 \)
Next, LCM is
LCM = \( (x - 2)(x - 3) x(x + 2) \)
orLCM = \( x(x^2 - 4)(x - 3) \)
The Given Expressions are
1st Expression = \( x^2 - 25 \)
or1st Expression = \( x^2 - 5^2 \)
or1st Expression = \( (x + 5) \cdot \boxed{(x - 5)} \)
Next
2nd Expression = \( x^2 - 9x + 20 \)
or2nd Expression = \( x^2 - 5x - 4x + 20 \)
or2nd Expression = \( x(x - 5) - 4(x - 5) \)
or2nd Expression = \( (x - 4) \cdot \boxed{(x - 5)} \)
So, HCF is
HCF = \( x - 5 \)
Next, LCM is
LCM = \( (x + 5) \cdot (x - 5) \cdot (x - 4) \)
orLCM = \( (x^2 - 25)(x - 4) \)
1st Expression = \( x^2 - 25 \)
or1st Expression = \( x^2 - 5^2 \)
or1st Expression = \( (x + 5) \cdot \boxed{(x - 5)} \)
Next
2nd Expression = \( x^2 - 9x + 20 \)
or2nd Expression = \( x^2 - 5x - 4x + 20 \)
or2nd Expression = \( x(x - 5) - 4(x - 5) \)
or2nd Expression = \( (x - 4) \cdot \boxed{(x - 5)} \)
So, HCF is
HCF = \( x - 5 \)
Next, LCM is
LCM = \( (x + 5) \cdot (x - 5) \cdot (x - 4) \)
orLCM = \( (x^2 - 25)(x - 4) \)
The Given Expressions are
1st Expression = \( x^2 + x - 6 \)
or1st Expression = \( x^2 + 3x - 2x - 6 \)
or1st Expression = \( x(x + 3) - 2(x + 3) \)
or1st Expression = \( \boxed{(x + 3)} \cdot (x - 2) \)
Next
2nd Expression = \( x^2 - 9 \)
or2nd Expression = \( x^2 - 3^2 \)
or2nd Expression = \( \boxed{(x + 3)} \cdot (x - 3) \)
So, HCF is
HCF = \( x + 3 \)
Next, LCM is
LCM = \( (x + 3)(x - 2)(x - 3) \)
orLCM = \( (x - 2)(x^2 - 9) \)
1st Expression = \( x^2 + x - 6 \)
or1st Expression = \( x^2 + 3x - 2x - 6 \)
or1st Expression = \( x(x + 3) - 2(x + 3) \)
or1st Expression = \( \boxed{(x + 3)} \cdot (x - 2) \)
Next
2nd Expression = \( x^2 - 9 \)
or2nd Expression = \( x^2 - 3^2 \)
or2nd Expression = \( \boxed{(x + 3)} \cdot (x - 3) \)
So, HCF is
HCF = \( x + 3 \)
Next, LCM is
LCM = \( (x + 3)(x - 2)(x - 3) \)
orLCM = \( (x - 2)(x^2 - 9) \)
The Given Expressions are
1st Expression = \( x^2 - z^2 + y^2 + 2xy \)
or1st Expression = \( (x^2 + 2xy + y^2) - z^2 \)
or1st Expression = \( (x + y)^2 - z^2 \)
or1st Expression = \( \boxed{(x + y + z)} \cdot (x + y - z) \)
Next
2nd Expression = \( x^2 - y^2 + z^2 - 2xz \)
or2nd Expression = \( (x^2 - 2xz + z^2) - y^2 \)
or2nd Expression = \( (x - z)^2 - y^2 \)
or2nd Expression = \( [(x - z) + y] \cdot [(x - z) - y] \)
or2nd Expression = \( \boxed{(x + y - z)} \cdot (x - y - z) \)
So, HCF is
HCF = \( x + y - z \)
Next, LCM is
LCM = \( (x + y - z) \cdot (x + y + z) \cdot (x - y - z) \)
1st Expression = \( x^2 - z^2 + y^2 + 2xy \)
or1st Expression = \( (x^2 + 2xy + y^2) - z^2 \)
or1st Expression = \( (x + y)^2 - z^2 \)
or1st Expression = \( \boxed{(x + y + z)} \cdot (x + y - z) \)
Next
2nd Expression = \( x^2 - y^2 + z^2 - 2xz \)
or2nd Expression = \( (x^2 - 2xz + z^2) - y^2 \)
or2nd Expression = \( (x - z)^2 - y^2 \)
or2nd Expression = \( [(x - z) + y] \cdot [(x - z) - y] \)
or2nd Expression = \( \boxed{(x + y - z)} \cdot (x - y - z) \)
So, HCF is
HCF = \( x + y - z \)
Next, LCM is
LCM = \( (x + y - z) \cdot (x + y + z) \cdot (x - y - z) \)
आनुपातिक बीजीय भिन्न (Rational Algebraic Fraction)
For Q.No.6 (b) in BLE Examination
- सरल गर्नुहोस् (Simplify): \( \dfrac{1}{a - 2} - \dfrac{4}{a^2 - 4} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{a^2 + b^2}{a^2 - b^2} - \dfrac{a - b}{a + b} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{x}{x^2 + 3x + 2} - \dfrac{2}{x^2 - 1} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{2x}{x - 2} - \dfrac{4}{x - 2} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{3}{a^2 - 4} + \dfrac{1}{(a - 2)^2} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{3a^2 - 6a}{a^2 - 1} + \dfrac{3}{a^2 - 1} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{2x^2 + x}{2x + 1} - \dfrac{2xy + y}{2x + 1} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{x^2 - 2xy + y^2}{x^2 - y^2} \times \dfrac{x + y}{x - y} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{a^2 - 4a}{a^2 - 4} - \dfrac{4}{4 - a^2} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{x^2 + y^2}{x - y} + \dfrac{2xy}{y - x} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{p^2}{p - q} + \dfrac{q^2}{q - p} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{x - 15}{x^2 - 9} + \dfrac{18}{x^2 - 9} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{1}{x - 1} + \dfrac{2x}{1 - x^2} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{2}{a + 1} + \dfrac{2a}{a - 1} - \dfrac{a^2 + 3}{a^2 - 1} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{1}{x + y} + \dfrac{1}{x - y} + \dfrac{2y}{x^2 - y^2} \) [2U]
- सरल गर्नुहोस् (Simplify):
\( \dfrac{x + y}{(y - z)(z - x)} - \dfrac{y + z}{(x - z)(x - y)} + \dfrac{z + x}{(z - y)(y - x)} \) [3U] - सरल गर्नुहोस् (Simplify): \( \dfrac{2}{a + 1} - \dfrac{2}{a - 1} + \dfrac{4}{a^2 + 1} \) [2U]
- सरल गर्नुहोस् (Simplify):
\( \dfrac{1}{(x - 3)(x - 4)} + \dfrac{1}{(x - 4)(x - 5)} + \dfrac{1}{(x - 5)(x - 3)} \) [3U] - सरल गर्नुहोस् (Simplify):
\( \dfrac{a}{(a - b)(a - c)} + \dfrac{b}{(b - a)(b - c)} + \dfrac{c}{(c - a)(c - b)} \) [3U] - सरल गर्नुहोस् (Simplify): \( \dfrac{1}{1 + x} - \dfrac{1}{x - 1} + \dfrac{2}{1 + x^2} \) [2U]
- सरल गर्नुहोस् (Simplify):
\( \dfrac{x}{x - 2y} + \dfrac{x}{x + 2y} + \dfrac{2x^2}{x^2 + 4y^2} \) [2U] - सरल गर्नुहोस् (Simplify): \( \dfrac{x}{x + y} + \dfrac{y}{x - y} - \dfrac{2xy}{x^2 - y^2} \) [2U]
- सरल गर्नुहोस् (Simplify): \( \dfrac{1}{a^2 - 3a + 2} + \dfrac{1}{a^2 - 5a + 6} \) [2U]
- सरल गर्नुहोस् (Simplify):
\( \dfrac{2}{x^2 + 3x + 2} + \dfrac{5x}{x^2 - x - 6} - \dfrac{x + 2}{x^2 - 2x - 3} \) [3U] - सरल गर्नुहोस् (Simplify):
\( \dfrac{2(a + 4)}{a + 3} \cdot \dfrac{a^2 + 2a - 24}{a^2 - a - 12} \) [2U] - सरल गर्नुहोस् (Simplify):
\( \dfrac{1}{x + 2} + \dfrac{2}{2(x - 2)} - \dfrac{4}{x^2 - 4} \) [2U] - सरल गर्नुहोस् (Simplify):
\( \dfrac{1}{a - 3} - \dfrac{1}{2(a + 3)} + \dfrac{a}{a^2 - 9} \) [2U] - सरल गर्नुहोस् (Simplify): \( \dfrac{2x + 6}{x^2 - 9} - \dfrac{4x}{2x^2 - 6x} \) [2U]
The simplification is
\( \dfrac{1}{a - 2} - \dfrac{4}{a^2 - 4} \)
or \( \dfrac{1}{a - 2} - \dfrac{4}{(a - 2)(a + 2)} \)
or \( \dfrac{1 \cdot (a + 2) - 4}{(a - 2)(a + 2)} \)
or \( \dfrac{a + 2 - 4}{(a - 2)(a + 2)} \)
or \( \dfrac{(a - 2)}{(a - 2)(a + 2)} \)
or \( \dfrac{1}{a + 2} \)
\( \dfrac{1}{a - 2} - \dfrac{4}{a^2 - 4} \)
or \( \dfrac{1}{a - 2} - \dfrac{4}{(a - 2)(a + 2)} \)
or \( \dfrac{1 \cdot (a + 2) - 4}{(a - 2)(a + 2)} \)
or \( \dfrac{a + 2 - 4}{(a - 2)(a + 2)} \)
or \( \dfrac{(a - 2)}{(a - 2)(a + 2)} \)
or \( \dfrac{1}{a + 2} \)
The simplification is
\( \dfrac{a^2 + b^2}{a^2 - b^2} - \dfrac{a - b}{a + b} \)
or \( \dfrac{a^2 + b^2}{(a - b)(a + b)} - \dfrac{a - b}{a + b} \)
or \( \dfrac{(a^2 + b^2) - (a - b)(a - b)}{(a - b)(a + b)} \)
or \( \dfrac{a^2 + b^2 - (a - b)^2}{a^2 - b^2} \)
or \( \dfrac{a^2 + b^2 - (a^2 - 2ab + b^2)}{a^2 - b^2} \)
or \( \dfrac{a^2 + b^2 - a^2 + 2ab - b^2}{a^2 - b^2} \)
or \( \dfrac{2ab}{a^2 - b^2} \)
\( \dfrac{a^2 + b^2}{a^2 - b^2} - \dfrac{a - b}{a + b} \)
or \( \dfrac{a^2 + b^2}{(a - b)(a + b)} - \dfrac{a - b}{a + b} \)
or \( \dfrac{(a^2 + b^2) - (a - b)(a - b)}{(a - b)(a + b)} \)
or \( \dfrac{a^2 + b^2 - (a - b)^2}{a^2 - b^2} \)
or \( \dfrac{a^2 + b^2 - (a^2 - 2ab + b^2)}{a^2 - b^2} \)
or \( \dfrac{a^2 + b^2 - a^2 + 2ab - b^2}{a^2 - b^2} \)
or \( \dfrac{2ab}{a^2 - b^2} \)
The simplification is
\( \dfrac{x}{x^2 + 3x + 2} - \dfrac{2}{x^2 - 1} \)
or\( \dfrac{x}{(x + 2)(x + 1)} - \dfrac{2}{(x - 1)(x + 1)} \)
or \( \dfrac{x(x - 1) - 2(x + 2)}{(x + 2)(x + 1)(x - 1)} \)
or \( \dfrac{x^2 - x - 2x - 4}{(x + 2)(x^2 - 1)} \)
or \( \dfrac{x^2 - 3x - 4}{(x + 2)(x^2 - 1)} \)
or \( \dfrac{(x - 4)(x + 1)}{(x + 2)(x + 1)(x - 1)} \)
or \( \dfrac{x - 4}{(x + 2)(x - 1)} \)
\( \dfrac{x}{x^2 + 3x + 2} - \dfrac{2}{x^2 - 1} \)
or\( \dfrac{x}{(x + 2)(x + 1)} - \dfrac{2}{(x - 1)(x + 1)} \)
or \( \dfrac{x(x - 1) - 2(x + 2)}{(x + 2)(x + 1)(x - 1)} \)
or \( \dfrac{x^2 - x - 2x - 4}{(x + 2)(x^2 - 1)} \)
or \( \dfrac{x^2 - 3x - 4}{(x + 2)(x^2 - 1)} \)
or \( \dfrac{(x - 4)(x + 1)}{(x + 2)(x + 1)(x - 1)} \)
or \( \dfrac{x - 4}{(x + 2)(x - 1)} \)
The simplification is
\( \dfrac{2x}{x - 2} - \dfrac{4}{x - 2} \)
or \( \dfrac{2x - 4}{x - 2} \)
or \( \dfrac{2(x - 2)}{(x - 2)} \)
or \( 2 \)
\( \dfrac{2x}{x - 2} - \dfrac{4}{x - 2} \)
or \( \dfrac{2x - 4}{x - 2} \)
or \( \dfrac{2(x - 2)}{(x - 2)} \)
or \( 2 \)
The simplification is
\( \dfrac{3}{a^2 - 4} + \dfrac{1}{(a - 2)^2} \)
or \( \dfrac{3}{(a - 2)(a + 2)} + \dfrac{1}{(a - 2)(a - 2)} \)
or \( \dfrac{3(a - 2) + 1(a + 2)}{(a - 2)^2 (a + 2)} \)
or \( \dfrac{3a - 6 + a + 2}{(a - 2)^2 (a + 2)} \)
or \( \dfrac{4a - 4}{(a - 2)^2 (a + 2)} \)
or \( \dfrac{4(a - 1)}{(a - 2)^2 (a + 2)} \)
\( \dfrac{3}{a^2 - 4} + \dfrac{1}{(a - 2)^2} \)
or \( \dfrac{3}{(a - 2)(a + 2)} + \dfrac{1}{(a - 2)(a - 2)} \)
or \( \dfrac{3(a - 2) + 1(a + 2)}{(a - 2)^2 (a + 2)} \)
or \( \dfrac{3a - 6 + a + 2}{(a - 2)^2 (a + 2)} \)
or \( \dfrac{4a - 4}{(a - 2)^2 (a + 2)} \)
or \( \dfrac{4(a - 1)}{(a - 2)^2 (a + 2)} \)
The simplification is
\( \dfrac{3a^2 - 6a}{a^2 - 1} + \dfrac{3}{a^2 - 1} \)
or \( \dfrac{3a^2 - 6a + 3}{a^2 - 1} \)
or \( \dfrac{3(a^2 - 2a + 1)}{a^2 - 1} \)
or \( \dfrac{3(a - 1)^2}{(a - 1)(a + 1)} \)
or \( \dfrac{3 \cdot (a - 1) \cdot (a - 1)}{(a - 1) \cdot (a + 1)} \)
or \( \dfrac{3(a - 1)}{a + 1} \)
\( \dfrac{3a^2 - 6a}{a^2 - 1} + \dfrac{3}{a^2 - 1} \)
or \( \dfrac{3a^2 - 6a + 3}{a^2 - 1} \)
or \( \dfrac{3(a^2 - 2a + 1)}{a^2 - 1} \)
or \( \dfrac{3(a - 1)^2}{(a - 1)(a + 1)} \)
or \( \dfrac{3 \cdot (a - 1) \cdot (a - 1)}{(a - 1) \cdot (a + 1)} \)
or \( \dfrac{3(a - 1)}{a + 1} \)
The simplification is
\( \dfrac{2x^2 + x}{2x + 1} - \dfrac{2xy + y}{2x + 1} \)
or \( \dfrac{(2x^2 + x) - (2xy + y)}{2x + 1} \)
or \( \dfrac{x(2x + 1) - y(2x + 1)}{2x + 1} \)
or \( \dfrac{(2x + 1)(x - y)}{(2x + 1)} \)
or \( x - y \)
\( \dfrac{2x^2 + x}{2x + 1} - \dfrac{2xy + y}{2x + 1} \)
or \( \dfrac{(2x^2 + x) - (2xy + y)}{2x + 1} \)
or \( \dfrac{x(2x + 1) - y(2x + 1)}{2x + 1} \)
or \( \dfrac{(2x + 1)(x - y)}{(2x + 1)} \)
or \( x - y \)
The simplification is
\( \dfrac{x^2 - 2xy + y^2}{x^2 - y^2} \times \dfrac{x + y}{x - y} \)
or \( \dfrac{(x - y)^2}{(x - y)(x + y)} \times \dfrac{x + y}{x - y} \)
or \( 1 \)
\( \dfrac{x^2 - 2xy + y^2}{x^2 - y^2} \times \dfrac{x + y}{x - y} \)
or \( \dfrac{(x - y)^2}{(x - y)(x + y)} \times \dfrac{x + y}{x - y} \)
or \( 1 \)
The simplification is
\( \dfrac{a^2 - 4a}{a^2 - 4} - \dfrac{4}{4 - a^2} \)
or \( \dfrac{a^2 - 4a}{a^2 - 4} - \dfrac{4}{-(a^2 - 4)} \)
or \( \dfrac{a^2 - 4a}{a^2 - 4} + \dfrac{4}{a^2 - 4} \)
or \( \dfrac{a^2 - 4a + 4}{a^2 - 4} \)
or \( \dfrac{(a - 2)^2}{(a - 2)(a + 2)} \)
or \( \dfrac{a - 2}{a + 2} \)
\( \dfrac{a^2 - 4a}{a^2 - 4} - \dfrac{4}{4 - a^2} \)
or \( \dfrac{a^2 - 4a}{a^2 - 4} - \dfrac{4}{-(a^2 - 4)} \)
or \( \dfrac{a^2 - 4a}{a^2 - 4} + \dfrac{4}{a^2 - 4} \)
or \( \dfrac{a^2 - 4a + 4}{a^2 - 4} \)
or \( \dfrac{(a - 2)^2}{(a - 2)(a + 2)} \)
or \( \dfrac{a - 2}{a + 2} \)
The simplification is
\( \dfrac{x^2 + y^2}{x - y} + \dfrac{2xy}{y - x} \)
or \( \dfrac{x^2 + y^2}{x - y} + \dfrac{2xy}{-(x - y)} \)
or \( \dfrac{x^2 + y^2}{x - y} - \dfrac{2xy}{x - y} \)
or \( \dfrac{x^2 + y^2 - 2xy}{x - y} \)
Factorizing the numerator:
or \( \dfrac{(x - y)^2}{x - y} \)
or \( x - y \)
\( \dfrac{x^2 + y^2}{x - y} + \dfrac{2xy}{y - x} \)
or \( \dfrac{x^2 + y^2}{x - y} + \dfrac{2xy}{-(x - y)} \)
or \( \dfrac{x^2 + y^2}{x - y} - \dfrac{2xy}{x - y} \)
or \( \dfrac{x^2 + y^2 - 2xy}{x - y} \)
Factorizing the numerator:
or \( \dfrac{(x - y)^2}{x - y} \)
or \( x - y \)
The simplification is
\( \dfrac{p^2}{p - q} + \dfrac{q^2}{q - p} \)
or \( \dfrac{p^2}{p - q} + \dfrac{q^2}{-(p - q)} \)
or \( \dfrac{p^2}{p - q} - \dfrac{q^2}{p - q} \)
The denominators are the same, so we subtract the numerators.
or \( \dfrac{p^2 - q^2}{p - q} \)
or \( \dfrac{(p + q) \cdot (p - q)}{(p - q)} \)
or \( p + q \)
\( \dfrac{p^2}{p - q} + \dfrac{q^2}{q - p} \)
or \( \dfrac{p^2}{p - q} + \dfrac{q^2}{-(p - q)} \)
or \( \dfrac{p^2}{p - q} - \dfrac{q^2}{p - q} \)
The denominators are the same, so we subtract the numerators.
or \( \dfrac{p^2 - q^2}{p - q} \)
or \( \dfrac{(p + q) \cdot (p - q)}{(p - q)} \)
or \( p + q \)
The simplification is
\( \dfrac{x - 15}{x^2 - 9} + \dfrac{18}{x^2 - 9} \)
or \( \dfrac{x - 15 + 18}{x^2 - 9} \)
or \( \dfrac{x + 3}{x^2 - 3^2} \)
or \( \dfrac{x + 3}{(x - 3) \cdot (x + 3)} \)
or \( \dfrac{1}{x - 3} \)
\( \dfrac{x - 15}{x^2 - 9} + \dfrac{18}{x^2 - 9} \)
or \( \dfrac{x - 15 + 18}{x^2 - 9} \)
or \( \dfrac{x + 3}{x^2 - 3^2} \)
or \( \dfrac{x + 3}{(x - 3) \cdot (x + 3)} \)
or \( \dfrac{1}{x - 3} \)
The simplification is
\( \dfrac{1}{x - 1} + \dfrac{2x}{1 - x^2} \)
or \( \dfrac{1}{x - 1} + \dfrac{2x}{-(x^2 - 1)} \)
or \( \dfrac{1}{x - 1} - \dfrac{2x}{(x - 1)(x + 1)} \)
or \( \dfrac{1 \cdot (x + 1) - 2x}{(x - 1)(x + 1)} \)
or \( \dfrac{x + 1 - 2x}{x^2 - 1} \)
or \( \dfrac{1 - x}{x^2 - 1} \)
or \( \dfrac{-(x - 1)}{(x - 1)(x + 1)} \)
or \( \dfrac{-1}{x + 1} \)
\( \dfrac{1}{x - 1} + \dfrac{2x}{1 - x^2} \)
or \( \dfrac{1}{x - 1} + \dfrac{2x}{-(x^2 - 1)} \)
or \( \dfrac{1}{x - 1} - \dfrac{2x}{(x - 1)(x + 1)} \)
or \( \dfrac{1 \cdot (x + 1) - 2x}{(x - 1)(x + 1)} \)
or \( \dfrac{x + 1 - 2x}{x^2 - 1} \)
or \( \dfrac{1 - x}{x^2 - 1} \)
or \( \dfrac{-(x - 1)}{(x - 1)(x + 1)} \)
or \( \dfrac{-1}{x + 1} \)
The simplification is
\( \dfrac{2}{a + 1} + \dfrac{2a}{a - 1} - \dfrac{a^2 + 3}{a^2 - 1} \)
or \( \dfrac{2}{a + 1} + \dfrac{2a}{a - 1} - \dfrac{a^2 + 3}{(a - 1)(a + 1)} \)
or \( \dfrac{2(a - 1) + 2a(a + 1) - (a^2 + 3)}{(a - 1)(a + 1)} \)
or \( \dfrac{2a - 2 + 2a^2 + 2a - a^2 - 3}{a^2 - 1} \)
or \( \dfrac{(2a^2 - a^2) + (2a + 2a) + (- 2 - 3)}{a^2 - 1} \)
or \( \dfrac{a^2 + 4a - 5}{a^2 - 1} \)
or \( \dfrac{(a + 5) \cdot (a - 1)}{(a + 1) \cdot (a - 1)} \)
or \( \dfrac{a + 5}{a + 1} \)
\( \dfrac{2}{a + 1} + \dfrac{2a}{a - 1} - \dfrac{a^2 + 3}{a^2 - 1} \)
or \( \dfrac{2}{a + 1} + \dfrac{2a}{a - 1} - \dfrac{a^2 + 3}{(a - 1)(a + 1)} \)
or \( \dfrac{2(a - 1) + 2a(a + 1) - (a^2 + 3)}{(a - 1)(a + 1)} \)
or \( \dfrac{2a - 2 + 2a^2 + 2a - a^2 - 3}{a^2 - 1} \)
or \( \dfrac{(2a^2 - a^2) + (2a + 2a) + (- 2 - 3)}{a^2 - 1} \)
or \( \dfrac{a^2 + 4a - 5}{a^2 - 1} \)
or \( \dfrac{(a + 5) \cdot (a - 1)}{(a + 1) \cdot (a - 1)} \)
or \( \dfrac{a + 5}{a + 1} \)
The simplification is
\( \dfrac{1}{x + y} + \dfrac{1}{x - y} + \dfrac{2y}{x^2 - y^2} \)
or \( \dfrac{1}{x + y} + \dfrac{1}{x - y} + \dfrac{2y}{(x + y)(x - y)} \)
or \( \dfrac{1 \cdot (x - y) + 1 \cdot (x + y) + 2y}{(x + y)(x - y)} \)
or \( \dfrac{x - y + x + y + 2y}{x^2 - y^2} \)
or \( \dfrac{(x + x) + (-y + y + 2y)}{x^2 - y^2} \)
or \( \dfrac{2x + 2y}{x^2 - y^2} \)
or \( \dfrac{2(x + y)}{(x - y)(x + y)} \)
or \( \dfrac{2}{x - y} \)
\( \dfrac{1}{x + y} + \dfrac{1}{x - y} + \dfrac{2y}{x^2 - y^2} \)
or \( \dfrac{1}{x + y} + \dfrac{1}{x - y} + \dfrac{2y}{(x + y)(x - y)} \)
or \( \dfrac{1 \cdot (x - y) + 1 \cdot (x + y) + 2y}{(x + y)(x - y)} \)
or \( \dfrac{x - y + x + y + 2y}{x^2 - y^2} \)
or \( \dfrac{(x + x) + (-y + y + 2y)}{x^2 - y^2} \)
or \( \dfrac{2x + 2y}{x^2 - y^2} \)
or \( \dfrac{2(x + y)}{(x - y)(x + y)} \)
or \( \dfrac{2}{x - y} \)
The simplification is
\( \dfrac{x + y}{(y - z)(z - x)} + \dfrac{y + z}{(z - x)(x - y)} + \dfrac{z + x}{(y - z)(x - y)} \)
or \( \dfrac{(x + y)(x - y) + (y + z)(y - z) + (z + x)(z - x)}{(x - y)(y - z)(z - x)} \)
\( \dfrac{(x^2 - y^2) + (y^2 - z^2) + (z^2 - x^2)}{(x - y)(y - z)(z - x)} \)
\( \dfrac{\cancel{x^2} - \cancel{y^2} + \cancel{y^2} - \cancel{z^2} + \cancel{z^2} - \cancel{x^2}}{(x - y)(y - z)(z - x)} \)
or \( \dfrac{0}{(x - y)(y - z)(z - x)} \)
or \( 0 \)
\( \dfrac{x + y}{(y - z)(z - x)} + \dfrac{y + z}{(z - x)(x - y)} + \dfrac{z + x}{(y - z)(x - y)} \)
or \( \dfrac{(x + y)(x - y) + (y + z)(y - z) + (z + x)(z - x)}{(x - y)(y - z)(z - x)} \)
\( \dfrac{(x^2 - y^2) + (y^2 - z^2) + (z^2 - x^2)}{(x - y)(y - z)(z - x)} \)
\( \dfrac{\cancel{x^2} - \cancel{y^2} + \cancel{y^2} - \cancel{z^2} + \cancel{z^2} - \cancel{x^2}}{(x - y)(y - z)(z - x)} \)
or \( \dfrac{0}{(x - y)(y - z)(z - x)} \)
or \( 0 \)
The simplification is
\( \dfrac{2}{a + 1} - \dfrac{2}{a - 1} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{2(a - 1) - 2(a + 1)}{(a + 1)(a - 1)} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{2a - 2 - 2a - 2}{a^2 - 1} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{- 4}{a^2 - 1} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{- 4(a^2 + 1) + 4(a^2 - 1)}{(a^2 - 1)(a^2 + 1)} \)
or \( \dfrac{- 4a^2 - 4 + 4a^2 - 4}{(a^2)^2 - 1^2} \)
or \( \dfrac{\cancel{- 4a^2} - 4 + \cancel{4a^2} - 4}{a^4 - 1} \)
or \( \dfrac{- 8}{a^4 - 1} \)
or \( - \dfrac{8}{a^4 - 1} \)
\( \dfrac{2}{a + 1} - \dfrac{2}{a - 1} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{2(a - 1) - 2(a + 1)}{(a + 1)(a - 1)} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{2a - 2 - 2a - 2}{a^2 - 1} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{- 4}{a^2 - 1} + \dfrac{4}{a^2 + 1} \)
or \( \dfrac{- 4(a^2 + 1) + 4(a^2 - 1)}{(a^2 - 1)(a^2 + 1)} \)
or \( \dfrac{- 4a^2 - 4 + 4a^2 - 4}{(a^2)^2 - 1^2} \)
or \( \dfrac{\cancel{- 4a^2} - 4 + \cancel{4a^2} - 4}{a^4 - 1} \)
or \( \dfrac{- 8}{a^4 - 1} \)
or \( - \dfrac{8}{a^4 - 1} \)
The simplification is
\( \dfrac{1}{(x - 3)(x - 4)} + \dfrac{1}{(x - 4)(x - 5)} + \dfrac{1}{(x - 5)(x - 3)} \)
or \( \dfrac{1 \cdot (x - 5) + 1 \cdot (x - 3) + 1 \cdot (x - 4)}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{x - 5 + x - 3 + x - 4}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{(x + x + x) + (- 5 - 3 - 4)}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{3x - 12}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{3 \cdot \boxed{(x - 4)}}{(x - 3) \cdot \boxed{(x - 4)} \cdot (x - 5)} \)
or \( \dfrac{3}{(x - 3)(x - 5)} \)
\( \dfrac{1}{(x - 3)(x - 4)} + \dfrac{1}{(x - 4)(x - 5)} + \dfrac{1}{(x - 5)(x - 3)} \)
or \( \dfrac{1 \cdot (x - 5) + 1 \cdot (x - 3) + 1 \cdot (x - 4)}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{x - 5 + x - 3 + x - 4}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{(x + x + x) + (- 5 - 3 - 4)}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{3x - 12}{(x - 3)(x - 4)(x - 5)} \)
or \( \dfrac{3 \cdot \boxed{(x - 4)}}{(x - 3) \cdot \boxed{(x - 4)} \cdot (x - 5)} \)
or \( \dfrac{3}{(x - 3)(x - 5)} \)
The simplification is
\( \dfrac{a}{(a - b)(a - c)} + \dfrac{b}{-(a - b)(b - c)} + \dfrac{c}{-(a - c) \cdot [-(b - c)]} \)
or\( \dfrac{a}{(a - b)(a - c)} - \dfrac{b}{(a - b)(b - c)} + \dfrac{c}{(a - c)(b - c)} \)
or\( \dfrac{a \cdot (b - c) - b \cdot (a - c) + c \cdot (a - b)}{(a - b)(b - c)(a - c)} \)
or\( \dfrac{ab - ac - ab + bc + ac - bc}{(a - b)(b - c)(a - c)} \)
or\( \dfrac{\cancel{ab} - \cancel{ac} - \cancel{ab} + \cancel{bc} + \cancel{ac} - \cancel{bc}}{(a - b)(b - c)(a - c)} \)
or \( \dfrac{0}{(a - b)(b - c)(a - c)} \)
or \( 0 \)
\( \dfrac{a}{(a - b)(a - c)} + \dfrac{b}{-(a - b)(b - c)} + \dfrac{c}{-(a - c) \cdot [-(b - c)]} \)
or\( \dfrac{a}{(a - b)(a - c)} - \dfrac{b}{(a - b)(b - c)} + \dfrac{c}{(a - c)(b - c)} \)
or\( \dfrac{a \cdot (b - c) - b \cdot (a - c) + c \cdot (a - b)}{(a - b)(b - c)(a - c)} \)
or\( \dfrac{ab - ac - ab + bc + ac - bc}{(a - b)(b - c)(a - c)} \)
or\( \dfrac{\cancel{ab} - \cancel{ac} - \cancel{ab} + \cancel{bc} + \cancel{ac} - \cancel{bc}}{(a - b)(b - c)(a - c)} \)
or \( \dfrac{0}{(a - b)(b - c)(a - c)} \)
or \( 0 \)
The simplification is
\( \dfrac{1}{1 + x} - \dfrac{1}{x - 1} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{1}{1 + x} + \dfrac{1}{1 - x} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{1 \cdot (1 - x) + 1 \cdot (1 + x)}{(1 + x)(1 - x)} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{1 - \cancel{x} + 1 + \cancel{x}}{1 - x^2} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{2}{1 - x^2} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{2(1 + x^2) + 2(1 - x^2)}{(1 - x^2)(1 + x^2)} \)
or \( \dfrac{2 + \cancel{2x^2} + 2 - \cancel{2x^2}}{1 - x^4} \)
or \( \dfrac{4}{1 - x^4} \)
\( \dfrac{1}{1 + x} - \dfrac{1}{x - 1} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{1}{1 + x} + \dfrac{1}{1 - x} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{1 \cdot (1 - x) + 1 \cdot (1 + x)}{(1 + x)(1 - x)} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{1 - \cancel{x} + 1 + \cancel{x}}{1 - x^2} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{2}{1 - x^2} + \dfrac{2}{1 + x^2} \)
or \( \dfrac{2(1 + x^2) + 2(1 - x^2)}{(1 - x^2)(1 + x^2)} \)
or \( \dfrac{2 + \cancel{2x^2} + 2 - \cancel{2x^2}}{1 - x^4} \)
or \( \dfrac{4}{1 - x^4} \)
The simplification is
\( \dfrac{x}{x - 2y} + \dfrac{x}{x + 2y} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{x(x + 2y) + x(x - 2y)}{(x - 2y)(x + 2y)} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{x^2 + \cancel{2xy} + x^2 - \cancel{2xy}}{x^2 - 4y^2} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{2x^2}{x^2 - 4y^2} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{2x^2(x^2 + 4y^2) + 2x^2(x^2 - 4y^2)}{(x^2 - 4y^2)(x^2 + 4y^2)} \)
or \( \dfrac{2x^4 + \cancel{8x^2y^2} + 2x^4 - \cancel{8x^2y^2}}{(x^2)^2 - (4y^2)^2} \)
or \( \dfrac{4x^4}{x^4 - 16y^4} \)
\( \dfrac{x}{x - 2y} + \dfrac{x}{x + 2y} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{x(x + 2y) + x(x - 2y)}{(x - 2y)(x + 2y)} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{x^2 + \cancel{2xy} + x^2 - \cancel{2xy}}{x^2 - 4y^2} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{2x^2}{x^2 - 4y^2} + \dfrac{2x^2}{x^2 + 4y^2} \)
or \( \dfrac{2x^2(x^2 + 4y^2) + 2x^2(x^2 - 4y^2)}{(x^2 - 4y^2)(x^2 + 4y^2)} \)
or \( \dfrac{2x^4 + \cancel{8x^2y^2} + 2x^4 - \cancel{8x^2y^2}}{(x^2)^2 - (4y^2)^2} \)
or \( \dfrac{4x^4}{x^4 - 16y^4} \)
The simplification is
\( \dfrac{x}{x + y} + \dfrac{y}{x - y} - \dfrac{2xy}{x^2 - y^2} \)
or\( \dfrac{x}{x + y} + \dfrac{y}{x - y} - \dfrac{2xy}{(x + y)(x - y)} \)
or \( \dfrac{x(x - y) + y(x + y) - 2xy}{(x + y)(x - y)} \)
or \( \dfrac{x^2 - xy + xy + y^2 - 2xy}{x^2 - y^2} \)
or \( \dfrac{x^2 + y^2 + \cancel{xy} - \cancel{xy} - 2xy}{x^2 - y^2} \)
or \( \dfrac{x^2 - 2xy + y^2}{x^2 - y^2} \)
or \( \dfrac{(x - y)^2}{(x + y)(x - y)} \)
or \( \dfrac{x - y}{x + y} \)
\( \dfrac{x}{x + y} + \dfrac{y}{x - y} - \dfrac{2xy}{x^2 - y^2} \)
or\( \dfrac{x}{x + y} + \dfrac{y}{x - y} - \dfrac{2xy}{(x + y)(x - y)} \)
or \( \dfrac{x(x - y) + y(x + y) - 2xy}{(x + y)(x - y)} \)
or \( \dfrac{x^2 - xy + xy + y^2 - 2xy}{x^2 - y^2} \)
or \( \dfrac{x^2 + y^2 + \cancel{xy} - \cancel{xy} - 2xy}{x^2 - y^2} \)
or \( \dfrac{x^2 - 2xy + y^2}{x^2 - y^2} \)
or \( \dfrac{(x - y)^2}{(x + y)(x - y)} \)
or \( \dfrac{x - y}{x + y} \)
The simplification is
\( \dfrac{1}{a^2 - 3a + 2} + \dfrac{1}{a^2 - 5a + 6} \)
or \( \dfrac{1}{(a - 1)(a - 2)} + \dfrac{1}{(a - 2)(a - 3)} \)
or \( \dfrac{1 \cdot (a - 3) + 1 \cdot (a - 1)}{(a - 1)(a - 2)(a - 3)} \)
or \( \dfrac{a - 3 + a - 1}{(a - 1)(a - 2)(a - 3)} \)
or \( \dfrac{2a - 4}{(a - 1)(a - 2)(a - 3)} \)
or \( \dfrac{2 \cdot (a - 2)}{(a - 1) \cdot (a - 2) \cdot (a - 3)} \)
or \( \dfrac{2}{(a - 1)(a - 3)} \)
\( \dfrac{1}{a^2 - 3a + 2} + \dfrac{1}{a^2 - 5a + 6} \)
or \( \dfrac{1}{(a - 1)(a - 2)} + \dfrac{1}{(a - 2)(a - 3)} \)
or \( \dfrac{1 \cdot (a - 3) + 1 \cdot (a - 1)}{(a - 1)(a - 2)(a - 3)} \)
or \( \dfrac{a - 3 + a - 1}{(a - 1)(a - 2)(a - 3)} \)
or \( \dfrac{2a - 4}{(a - 1)(a - 2)(a - 3)} \)
or \( \dfrac{2 \cdot (a - 2)}{(a - 1) \cdot (a - 2) \cdot (a - 3)} \)
or \( \dfrac{2}{(a - 1)(a - 3)} \)
The simplification is
\( \dfrac{2}{x^2 + 3x + 2} + \dfrac{5x}{x^2 - x - 6} - \dfrac{x + 2}{x^2 - 2x - 3} \)
or\( \dfrac{2}{(x + 2)(x + 1)} + \dfrac{5x}{(x - 3)(x + 2)} - \dfrac{x + 2}{(x - 3)(x + 1)} \)
or \( \dfrac{2(x - 3) + 5x(x + 1) - (x + 2)(x + 2)}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{2x - 6 + 5x^2 + 5x - (x^2 + 4x + 4)}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{5x^2 + 7x - 6 - x^2 - 4x - 4}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{(5x^2 - x^2) + (7x - 4x) + (- 6 - 4)}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{4x^2 + 3x - 10}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{(4x - 5) \cdot (x + 2)}{(x + 2) \cdot (x + 1) \cdot (x - 3)} \)
or \( \dfrac{4x - 5}{(x + 1)(x - 3)} \)
\( \dfrac{2}{x^2 + 3x + 2} + \dfrac{5x}{x^2 - x - 6} - \dfrac{x + 2}{x^2 - 2x - 3} \)
or\( \dfrac{2}{(x + 2)(x + 1)} + \dfrac{5x}{(x - 3)(x + 2)} - \dfrac{x + 2}{(x - 3)(x + 1)} \)
or \( \dfrac{2(x - 3) + 5x(x + 1) - (x + 2)(x + 2)}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{2x - 6 + 5x^2 + 5x - (x^2 + 4x + 4)}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{5x^2 + 7x - 6 - x^2 - 4x - 4}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{(5x^2 - x^2) + (7x - 4x) + (- 6 - 4)}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{4x^2 + 3x - 10}{(x + 2)(x + 1)(x - 3)} \)
or \( \dfrac{(4x - 5) \cdot (x + 2)}{(x + 2) \cdot (x + 1) \cdot (x - 3)} \)
or \( \dfrac{4x - 5}{(x + 1)(x - 3)} \)
The simplification is
\( \dfrac{2(a + 4)}{a + 3} \cdot \dfrac{a^2 + 2a - 24}{a^2 - a - 12} \)
or \( \dfrac{2(a + 4)}{a + 3} \cdot \dfrac{(a + 6) \cdot (a - 4)}{(a - 4) \cdot (a + 3)} \)
or \( \dfrac{2(a + 4)(a + 6)}{(a + 3)^2} \)
\( \dfrac{2(a + 4)}{a + 3} \cdot \dfrac{a^2 + 2a - 24}{a^2 - a - 12} \)
or \( \dfrac{2(a + 4)}{a + 3} \cdot \dfrac{(a + 6) \cdot (a - 4)}{(a - 4) \cdot (a + 3)} \)
or \( \dfrac{2(a + 4)(a + 6)}{(a + 3)^2} \)
The simplification is
\( \dfrac{1}{x + 2} + \dfrac{2}{2(x - 2)} - \dfrac{4}{x^2 - 4} \)
or\( \dfrac{1}{x + 2} + \dfrac{2}{2(x - 2)} - \dfrac{4}{(x + 2)(x - 2)} \)
or\( \dfrac{1 \cdot (x - 2) + 1 \cdot (x + 2) - 4}{(x + 2)(x - 2)} \)
or \( \dfrac{x - \cancel{2} + x + \cancel{2} - 4}{x^2 - 4} \)
or \( \dfrac{2x - 4}{x^2 - 4} \)
or \( \dfrac{2(x - 2)}{(x + 2)(x - 2)} \)
or \( \dfrac{2 \cdot (x - 2)}{(x + 2) \cdot (x - 2)} \)
or \( \dfrac{2}{x + 2} \)
\( \dfrac{1}{x + 2} + \dfrac{2}{2(x - 2)} - \dfrac{4}{x^2 - 4} \)
or\( \dfrac{1}{x + 2} + \dfrac{2}{2(x - 2)} - \dfrac{4}{(x + 2)(x - 2)} \)
or\( \dfrac{1 \cdot (x - 2) + 1 \cdot (x + 2) - 4}{(x + 2)(x - 2)} \)
or \( \dfrac{x - \cancel{2} + x + \cancel{2} - 4}{x^2 - 4} \)
or \( \dfrac{2x - 4}{x^2 - 4} \)
or \( \dfrac{2(x - 2)}{(x + 2)(x - 2)} \)
or \( \dfrac{2 \cdot (x - 2)}{(x + 2) \cdot (x - 2)} \)
or \( \dfrac{2}{x + 2} \)
The simplification is
\( \dfrac{1}{a - 3} - \dfrac{1}{2(a + 3)} + \dfrac{a}{a^2 - 9} \)
or\( \dfrac{1}{a - 3} - \dfrac{1}{2(a + 3)} + \dfrac{a}{(a - 3)(a + 3)} \)
or \( \dfrac{1 \cdot 2(a + 3) - 1 \cdot (a - 3) + a \cdot 2}{2(a - 3)(a + 3)} \)
or \( \dfrac{2a + 6 - a + 3 + 2a}{2(a^2 - 9)} \)
or \( \dfrac{(2a - a + 2a) + (6 + 3)}{2(a^2 - 9)} \)
or \( \dfrac{3a + 9}{2(a^2 - 9)} \)
or \( \dfrac{3(a + 3)}{2(a - 3)(a + 3)} \)
or \( \dfrac{3 \cdot (a + 3)}{2(a - 3) \cdot (a + 3)} \)
or \( \dfrac{3}{2(a - 3)} \)
\( \dfrac{1}{a - 3} - \dfrac{1}{2(a + 3)} + \dfrac{a}{a^2 - 9} \)
or\( \dfrac{1}{a - 3} - \dfrac{1}{2(a + 3)} + \dfrac{a}{(a - 3)(a + 3)} \)
or \( \dfrac{1 \cdot 2(a + 3) - 1 \cdot (a - 3) + a \cdot 2}{2(a - 3)(a + 3)} \)
or \( \dfrac{2a + 6 - a + 3 + 2a}{2(a^2 - 9)} \)
or \( \dfrac{(2a - a + 2a) + (6 + 3)}{2(a^2 - 9)} \)
or \( \dfrac{3a + 9}{2(a^2 - 9)} \)
or \( \dfrac{3(a + 3)}{2(a - 3)(a + 3)} \)
or \( \dfrac{3 \cdot (a + 3)}{2(a - 3) \cdot (a + 3)} \)
or \( \dfrac{3}{2(a - 3)} \)
The simplification is
\( \dfrac{2x + 6}{x^2 - 9} - \dfrac{4x}{2x^2 - 6x} \)
or \( \dfrac{2(x + 3)}{(x+3)(x-3)} - \dfrac{4x}{2x(x - 3)} \)
or \( \dfrac{2}{(x-3)} - \dfrac{2}{(x - 3)} \)
or \( 0 \)
\( \dfrac{2x + 6}{x^2 - 9} - \dfrac{4x}{2x^2 - 6x} \)
or \( \dfrac{2(x + 3)}{(x+3)(x-3)} - \dfrac{4x}{2x(x - 3)} \)
or \( \dfrac{2}{(x-3)} - \dfrac{2}{(x - 3)} \)
or \( 0 \)
Unit 10: समीकरण र लेखाचित्र (Equation and Graph)
For Q.No.7 (a) in BLE Examination
- कस्ता समीकरणहरूलाई युगपतरैखीय समीकरण भनिन्छ ?
What type of equations are called simultaneous equations? [1K] - कस्ता समीकरणहरूलाई वर्ग समीकरण भनिन्छ ?
What type of equations are called quadratic equations? [1K] - हल गर्नुहोस् (Solve): \( 2 - x = 17 - 4x \) [1A]
- हल गर्नुहोस् (Solve): \( \dfrac{7x + 3}{4} = 6 \) [1A]
- x को मान कति हुँदा समीकरण \( 8x + 1 = 57 \) सत्य हुन्छ ?
For what value of x the equation \( 8x + 1 = 57 \) becomes true? [1A] - यदि \( 5x + 8 = 13 \), x को मान पत्ता लगाउनुहोस्।
If \( 5x + 8 = 13 \), find the value of x. [1A] - वर्ग समीकरण \( x^2 = 16 \) मा x का मानहरू के के हुन् ?
What are the values of x in the quadratic equation \( x^2 = 16 \)? [1A] - x को मान पत्ता लगाउनुहोस् (Find the value of x): \( \dfrac{x}{3} = \dfrac{3}{x} \) [1A]
- हल गर्नुहोस् (Solve): \( x^2 - 4 = 21 \) [1A]
- दिइएको समीकरण हल गर्नुहोस् (Solve the given equation): \( x^2 + 2x = 0 \) [1A]
- हल गर्नुहोस् (Solve): \( \dfrac{1}{x} = \dfrac{x}{16} \) [1A]
- हल गर्नुहोस् (Solve): \( 3x^2 - 4x = 0 \) [1A]
- x को मान २ र ३ हुने वर्ग समीकरण पत्ता लगाउनुहोस्।
Find the quadratic equation in which values of x are 2 and 3. [1U] - मूलहरू १ र २ हुने वर्ग समीकरण लेख्नुहोस्।
Write the quadratic equations whose roots are 1 and 2. [1A] - एउटा वर्ग समीकरणका जम्मा कतिओटा मूलहरू हुन्छन् ?
How many roots are there in a quadratic equation? [1A]
Two or more linear equations involving the same variables and that are solved together to find a common solution, is called Simultaneous linear equations
An equation in which the highest power (degree) of the variable is two is called a quadratic equation. The standard form is \( ax^2 + bx + c = 0 \), where \( a \neq 0 \).
The solution is
\( 2 - x = 17 - 4x \)
or \( -x + 4x = 17 - 2 \)
or \( 3x = 15 \)
or \( x = \dfrac{15}{3} \)
or \( x = 5 \)
\( 2 - x = 17 - 4x \)
or \( -x + 4x = 17 - 2 \)
or \( 3x = 15 \)
or \( x = \dfrac{15}{3} \)
or \( x = 5 \)
The solution is
\( \dfrac{7x + 3}{4} = 6 \)
or \( 7x + 3 = 6 \cdot 4 \)
or \( 7x + 3 = 24 \)
or \( 7x = 24 - 3 \)
or \( 7x = 21 \)
or \( x = \dfrac{21}{7} \)
or \( x = 3 \)
\( \dfrac{7x + 3}{4} = 6 \)
or \( 7x + 3 = 6 \cdot 4 \)
or \( 7x + 3 = 24 \)
or \( 7x = 24 - 3 \)
or \( 7x = 21 \)
or \( x = \dfrac{21}{7} \)
or \( x = 3 \)
The solution is
\( 8x + 1 = 57 \)
or \( 8x = 57 - 1 \)
or \( 8x = 56 \)
or \( x = \dfrac{56}{8} \)
or \( x = 7 \) For what value of \(x=7\) the equation \( 8x + 1 = 57 \) becomes true.
\( 8x + 1 = 57 \)
or \( 8x = 57 - 1 \)
or \( 8x = 56 \)
or \( x = \dfrac{56}{8} \)
or \( x = 7 \) For what value of \(x=7\) the equation \( 8x + 1 = 57 \) becomes true.
The solution is
\( 5x + 8 = 13 \)
or \( 5x = 13 - 8 \)
or \( 5x = 5 \)
or \( x = \dfrac{5}{5} \)
or \( x = 1 \)
\( 5x + 8 = 13 \)
or \( 5x = 13 - 8 \)
or \( 5x = 5 \)
or \( x = \dfrac{5}{5} \)
or \( x = 1 \)
The solution is
\( x^2 = 16 \)
or \( x = \pm \sqrt{16} \)
or \( x = \pm 4 \)
\( x^2 = 16 \)
or \( x = \pm \sqrt{16} \)
or \( x = \pm 4 \)
The solution is
\( \dfrac{x}{3} = \dfrac{3}{x} \)
or \( x \cdot x = 3 \cdot 3 \)
or \( x^2 = 9 \)
or \( x = \pm \sqrt{9} \)
or \( x = \pm 3 \)
\( \dfrac{x}{3} = \dfrac{3}{x} \)
or \( x \cdot x = 3 \cdot 3 \)
or \( x^2 = 9 \)
or \( x = \pm \sqrt{9} \)
or \( x = \pm 3 \)
The solution is
\( x^2 - 4 = 21 \)
or \( x^2 = 21 + 4 \)
or \( x^2 = 25 \)
or \( x = \pm \sqrt{25} \)
or \( x = \pm 5 \)
\( x^2 - 4 = 21 \)
or \( x^2 = 21 + 4 \)
or \( x^2 = 25 \)
or \( x = \pm \sqrt{25} \)
or \( x = \pm 5 \)
The solution is
\( x^2 + 2x = 0 \)
or \( x(x + 2) = 0 \)
Either \( x = 0 \) or \( x + 2 = 0 \).
Therefore, the values of \( x \) are
\( x=0 \) and \( x=-2 \)
\( x^2 + 2x = 0 \)
or \( x(x + 2) = 0 \)
Either \( x = 0 \) or \( x + 2 = 0 \).
Therefore, the values of \( x \) are
\( x=0 \) and \( x=-2 \)
The solution is
\( \dfrac{1}{x} = \dfrac{x}{16} \)
or \( x \cdot x = 1 \cdot 16 \)
or \( x^2 = 16 \)
or \( x = \pm \sqrt{16} \)
or \( x = \pm 4 \)
\( \dfrac{1}{x} = \dfrac{x}{16} \)
or \( x \cdot x = 1 \cdot 16 \)
or \( x^2 = 16 \)
or \( x = \pm \sqrt{16} \)
or \( x = \pm 4 \)
The solution is
\( 3x^2 - 4x = 0 \)
or \( x(3x - 4) = 0 \)
Either \( x = 0 \) or \( 3x - 4 = 0 \).
Therefore, the values of \( x \) are
\(x= 0 \) and \( x=\dfrac{4}{3} \).
\( 3x^2 - 4x = 0 \)
or \( x(3x - 4) = 0 \)
Either \( x = 0 \) or \( 3x - 4 = 0 \).
Therefore, the values of \( x \) are
\(x= 0 \) and \( x=\dfrac{4}{3} \).
The quadratic equation is
\( x^2 - (sum)x + (product) = 0 \)
or \( x^2 - (5)x + 6 = 0 \)
or \( x^2 - 5x + 6 = 0 \)
\( x^2 - (sum)x + (product) = 0 \)
or \( x^2 - (5)x + 6 = 0 \)
or \( x^2 - 5x + 6 = 0 \)
The quadratic equation is
\( x^2 - (sum)x + (product) = 0 \)
or \( x^2 - (3)x + 2 = 0 \)
or \( x^2 - 3x + 2 = 0 \)
\( x^2 - (sum)x + (product) = 0 \)
or \( x^2 - (3)x + 2 = 0 \)
or \( x^2 - 3x + 2 = 0 \)
There are two roots in a quadratic equation.
For Q.No.7(b) in BLE Examination
- हल गर्नुहोस् (Solve): \( \dfrac{x + 1}{2} = \dfrac{7x - 3}{3x} \) [2A]
- हल गर्नुहोस् (Solve): \( 8x^2 - 32 = 0 \) [2A]
- हल गर्नुहोस् (Solve): \( 3x - 9x^2 = 0 \) [2A]
- हल गर्नुहोस् (Solve): \( \dfrac{x^2}{4} - 25 = 0 \) [2A]
- हल गर्नुहोस् (Solve): \( x^2 - x - 2 = 0 \) [2A]
- हल गर्नुहोस् (Solve): \( x^2 - x - 6 = 0 \) [2A]
- समीकरण \( x + y = 4 \) लाई लेखाचित्रमा देखाउनुहोस्।
Show the equation \( x + y = 4 \) in a graph. [2A] - दिइएको समीकरणलाई लेखाचित्रमा देखाउनुहोस्।
(Show the given equation in a graph): \( x = y + 4 \) [2A] - दिइएको समीकरणलाई लेखाचित्रमा देखाउनुहोस्।
(Show the given equation in a graph): \( y = 4x + 8 \) [2A] - दिइएको समीकरणलाई लेखाचित्रमा देखाउनुहोस्।
(Show the given equation in a graph): \( 3x + 4y = 12 \) [2A] - हल गर्नुहोस् (Solve): \( x(x + 1) = 4 + x \) [2A]
- हल गर्नुहोस् (Solve): \( (x - 7)^2 - 64 = 0 \) [2HA]
- हल गर्नुहोस् (Solve): \( 7x^2 + 13x - 2 = 0 \) [2HA]
- x को मान कति हुँदा, \( x^2 - 5x + 6 \) को मान शून्य हुन्छ ?
For what value of x, the value of \( x^2 - 5x + 6 \) is zero? [2HA] - x को मान कति हुँदा, \( 2x^2 - x - 6 \) को मान शून्य हुन्छ ?
For what value of x, the value of \( 2x^2 - x - 6 \) is zero? [2HA]
The solution is
\( \dfrac{x + 1}{2} = \dfrac{7x - 3}{3x} \)
or \( 3x(x + 1) = 2(7x - 3) \)
or \( 3x^2 + 3x = 14x - 6 \)
or \( 3x^2 + 3x - 14x + 6 = 0 \)
or \( 3x^2 - 11x + 6 = 0 \)
or \( 3x^2 - (9x + 2x) + 6 = 0 \)
or \( 3x(x - 3) - 2(x - 3) = 0 \)
or \( (x - 3)(3x - 2) = 0 \)
Therefore, the values of \( x \) are
or\(x= 3 \) and \(x= \dfrac{2}{3} \).
\( \dfrac{x + 1}{2} = \dfrac{7x - 3}{3x} \)
or \( 3x(x + 1) = 2(7x - 3) \)
or \( 3x^2 + 3x = 14x - 6 \)
or \( 3x^2 + 3x - 14x + 6 = 0 \)
or \( 3x^2 - 11x + 6 = 0 \)
or \( 3x^2 - (9x + 2x) + 6 = 0 \)
or \( 3x(x - 3) - 2(x - 3) = 0 \)
or \( (x - 3)(3x - 2) = 0 \)
Therefore, the values of \( x \) are
or\(x= 3 \) and \(x= \dfrac{2}{3} \).
The solution is
\( 8x^2 - 32 = 0 \)
or \( 8x^2 = 32 \)
or \( x^2 = \dfrac{32}{8} \)
or \( x^2 = 4 \)
or \( x = \pm \sqrt{4} \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -2 \).
\( 8x^2 - 32 = 0 \)
or \( 8x^2 = 32 \)
or \( x^2 = \dfrac{32}{8} \)
or \( x^2 = 4 \)
or \( x = \pm \sqrt{4} \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -2 \).
The solution is
\( 3x - 9x^2 = 0 \)
or \( 3x(1 - 3x) = 0 \)
Therefore, the values of \( x \) are
or \( x = 0 \) and \( x = \dfrac{1}{3} \).
\( 3x - 9x^2 = 0 \)
or \( 3x(1 - 3x) = 0 \)
Therefore, the values of \( x \) are
or \( x = 0 \) and \( x = \dfrac{1}{3} \).
The solution is
\( \dfrac{x^2}{4} - 25 = 0 \)
or \( \dfrac{x^2}{4} = 25 \)
or \( x^2 = 25 \times 4 \)
or \( x^2 = 100 \)
or \( x = \pm \sqrt{100} \)
Therefore, the values of \( x \) are
or \( x = 10 \) and \( x = -10 \).
\( \dfrac{x^2}{4} - 25 = 0 \)
or \( \dfrac{x^2}{4} = 25 \)
or \( x^2 = 25 \times 4 \)
or \( x^2 = 100 \)
or \( x = \pm \sqrt{100} \)
Therefore, the values of \( x \) are
or \( x = 10 \) and \( x = -10 \).
The solution is
\( x^2 - x - 2 = 0 \)
or \( x^2 - (2x - x) - 2 = 0 \)
or \( x^2 - 2x + x - 2 = 0 \)
or \( x(x - 2) + 1(x - 2) = 0 \)
or \( (x - 2)(x + 1) = 0 \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -1 \).
\( x^2 - x - 2 = 0 \)
or \( x^2 - (2x - x) - 2 = 0 \)
or \( x^2 - 2x + x - 2 = 0 \)
or \( x(x - 2) + 1(x - 2) = 0 \)
or \( (x - 2)(x + 1) = 0 \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -1 \).
The solution is
\( x^2 - x - 6 = 0 \)
or \( x^2 - (3x - 2x) - 6 = 0 \)
or \( x^2 - 3x + 2x - 6 = 0 \)
or \( x(x - 3) + 2(x - 3) = 0 \)
or \( (x - 3)(x + 2) = 0 \)
Therefore, the values of \( x \) are
or \( x = 3 \) and \( x = -2 \).
\( x^2 - x - 6 = 0 \)
or \( x^2 - (3x - 2x) - 6 = 0 \)
or \( x^2 - 3x + 2x - 6 = 0 \)
or \( x(x - 3) + 2(x - 3) = 0 \)
or \( (x - 3)(x + 2) = 0 \)
Therefore, the values of \( x \) are
or \( x = 3 \) and \( x = -2 \).
Given lines are
\( x + y = 4 \)
The table value of the line is
The line is shown in the graph.
\( x + y = 4 \)
The table value of the line is
| \( x \) | 0 | 4 | 2 |
| \( y \) | 4 | 0 | 2 |
Given line is
\( x = y + 4 \) वा \( y = x - 4 \)
The table value of the line is
The line is shown in the graph.
\( x = y + 4 \) वा \( y = x - 4 \)
The table value of the line is
| \( x \) | 0 | 4 | 2 |
| \( y \) | -4 | 0 | -2 |
Given line is
\( y = 4x + 8 \)
The table value of the line is
The line is shown in the graph.
\( y = 4x + 8 \)
The table value of the line is
| \( x \) | 0 | -2 | -1 |
| \( y \) | 8 | 0 | 4 |
Given line is
\( 3x + 4y = 12 \)
\( y = \dfrac{12 - 3x}{4} \)
The table value of the line is
The line is shown in the graph.
\( 3x + 4y = 12 \)
\( y = \dfrac{12 - 3x}{4} \)
The table value of the line is
| \( x \) | 0 | 4 | -4 |
| \( y \) | 3 | 0 | 6 |
The solution is
\( x(x + 1) = 4 + x \)
or \( x^2 + x = 4 + x \)
or \( x^2 + x - x - 4 = 0 \)
or \( x^2 - 4 = 0 \)
or \( x^2 = 4 \)
or \( x = \pm \sqrt{4} \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -2 \).
\( x(x + 1) = 4 + x \)
or \( x^2 + x = 4 + x \)
or \( x^2 + x - x - 4 = 0 \)
or \( x^2 - 4 = 0 \)
or \( x^2 = 4 \)
or \( x = \pm \sqrt{4} \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -2 \).
The solution is
\( (x - 7)^2 - 64 = 0 \)
or \( (x - 7)^2 = 64 \)
or \( x - 7 = \pm \sqrt{64} \)
or \( x - 7 = \pm 8 \)
Taking the positive sign (+)
\( x - 7 = 8 \Rightarrow x = 15 \)
Taking the negative sign (-)
\( x - 7 = -8 \Rightarrow x = -1 \)
Therefore, the values of \( x \) are
or \( x = 15 \) and \( x = -1 \).
\( (x - 7)^2 - 64 = 0 \)
or \( (x - 7)^2 = 64 \)
or \( x - 7 = \pm \sqrt{64} \)
or \( x - 7 = \pm 8 \)
Taking the positive sign (+)
\( x - 7 = 8 \Rightarrow x = 15 \)
Taking the negative sign (-)
\( x - 7 = -8 \Rightarrow x = -1 \)
Therefore, the values of \( x \) are
or \( x = 15 \) and \( x = -1 \).
The solution is
\( 7x^2 + 13x - 2 = 0 \)
or \( 7x^2 + (14x - x) - 2 = 0 \)
or \( 7x^2 + 14x - x - 2 = 0 \)
or \( 7x(x + 2) - 1(x + 2) = 0 \)
or \( (x + 2)(7x - 1) = 0 \)
Either \( x + 2 = 0 \) or \( 7x - 1 = 0 \)
Therefore, the values of \( x \) are
or \( x = -2 \) and \( x = \dfrac{1}{7} \).
\( 7x^2 + 13x - 2 = 0 \)
or \( 7x^2 + (14x - x) - 2 = 0 \)
or \( 7x^2 + 14x - x - 2 = 0 \)
or \( 7x(x + 2) - 1(x + 2) = 0 \)
or \( (x + 2)(7x - 1) = 0 \)
Either \( x + 2 = 0 \) or \( 7x - 1 = 0 \)
Therefore, the values of \( x \) are
or \( x = -2 \) and \( x = \dfrac{1}{7} \).
The solution is
\( x^2 - 5x + 6 = 0 \)
or \( x^2 - (3x + 2x) + 6 = 0 \)
or \( x^2 - 3x - 2x + 6 = 0 \)
or \( x(x - 3) - 2(x - 3) = 0 \)
or \( (x - 3)(x - 2) = 0 \)
Either \( x - 3 = 0 \) or \( x - 2 = 0 \)
Therefore, the values of \( x \) are
or \( x = 3 \) and \( x = 2 \).
\( x^2 - 5x + 6 = 0 \)
or \( x^2 - (3x + 2x) + 6 = 0 \)
or \( x^2 - 3x - 2x + 6 = 0 \)
or \( x(x - 3) - 2(x - 3) = 0 \)
or \( (x - 3)(x - 2) = 0 \)
Either \( x - 3 = 0 \) or \( x - 2 = 0 \)
Therefore, the values of \( x \) are
or \( x = 3 \) and \( x = 2 \).
The solution is
\( 2x^2 - x - 6 = 0 \)
or \( 2x^2 - (4x - 3x) - 6 = 0 \)
or \( 2x^2 - 4x + 3x - 6 = 0 \)
or \( 2x(x - 2) + 3(x - 2) = 0 \)
or \( (x - 2)(2x + 3) = 0 \)
Either \( x - 2 = 0 \) or \( 2x + 3 = 0 \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -\dfrac{3}{2} \).
\( 2x^2 - x - 6 = 0 \)
or \( 2x^2 - (4x - 3x) - 6 = 0 \)
or \( 2x^2 - 4x + 3x - 6 = 0 \)
or \( 2x(x - 2) + 3(x - 2) = 0 \)
or \( (x - 2)(2x + 3) = 0 \)
Either \( x - 2 = 0 \) or \( 2x + 3 = 0 \)
Therefore, the values of \( x \) are
or \( x = 2 \) and \( x = -\dfrac{3}{2} \).
For Q.No.8 (b) in BLE Examination
- हल गर्नुहोस् (Solve): \( x^2 + \dfrac{1}{16} = \dfrac{x}{2} \) [2A]
- हल गर्नुहोस् (Solve): \( \dfrac{3 - 4x}{5} - \dfrac{4 + 5x}{9} + \dfrac{7x + 11}{15} = 0 \) [2A]
- हल गर्नुहोस् (Solve): \( (x + 1)(x + 2) = x(x + 7) - 6 \) [2A]
- हल गर्नुहोस् (Solve): \( \dfrac{6x - 3}{2x + 7} = \dfrac{3x - 2}{x + 5} \) [2A]
- हल गर्नुहोस् (Solve): \( 2x + y = 6 \), \( 3x + y = 7 \) [2A]
- हल गर्नुहोस् (Solve): \( \dfrac{x}{2} + \dfrac{2}{x} = 2 \) [2A]
- हल गर्नुहोस् (Solve): \( \dfrac{x - 4}{4} + \dfrac{6}{x + 1} = \dfrac{5}{4} \) [2A]
- लेखाचित्रद्वारा हल गर्नुहोस् (Solve graphically):
\( 2x - y = 5 \) and \( x - y = 1 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by graphical method):
\( x + y = 6 \), \( 2x - y = 9 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by graphical method):
\( 5x - 3y = 5 \), \( -3x + 2y = -2 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by graphical method):
\( x + y = 5 \), \( x - y = 3 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by graphical method):
\( x + y = 6 \), \( y = x - 4 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by graphical method):
\( 2x - 1 = y \), \( 3x - 2y = 0 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by using graph):
\( 5x + 7y = 1 \) and \( x + 4y = -5 \) [2A] - लेखाचित्र विधिबाट हल गर्नुहोस् (Solve by graphical method):
\( 2x + y = 2 \), \( x - y = -5 \) [2A] - बाबुको उमेर छोराको उमेरको ३ गुणा छ। तिनीहरूको उमेरको योगफल ४० वर्ष भए तिनीहरूको उमेर पत्ता लगाउनुहोस्।
Father's age is three times the son's age. If the sum of their ages is 40 years, find their ages. [2A] - ६ ओटा कलम र ३ ओटा पेन्सिलको संयुक्त मूल्य रु. ६० छ। ५ ओटा कलम र २ ओटा पेन्सिलको संयुक्त मूल्य रु. ४८ छ। प्रत्येक कलम र प्रत्येक पेन्सिलको मूल्य कति पर्छ ?
The combined price of 6 pens and 3 pencils is Rs. 60. The combined price of 5 pens and 2 pencils is Rs. 48. What is the price of each pen and a pencil? [2HA] - यदि दुईओटा सङ्ख्याहरूको योगफल २५ र फरक १५ छ भने ती सङ्ख्याहरू पत्ता लगाउनुहोस्।
If the sum of two numbers is 25 and their difference is 15, find the numbers. [2HA] - दुईओटा सङ्ख्याहरूको अन्तर २८ छ। यदि ठूलो सङ्ख्या सानो सङ्ख्याको ३ गुणा छ भने उक्त सङ्ख्याहरू पत्ता लगाउनुहोस्।
The difference of two numbers is 28. If the larger number is 3 times the smaller, find the numbers. [2A] - दुईओटा सङ्ख्याहरू ३:५ को अनुपातमा छन्। यदि तिनीहरूको योगफल ८० भए ती सङ्ख्याहरू पत्ता लगाउनुहोस्।
Two numbers are in the ratio 3:5. If the sum is 80, find the numbers. [2A] - दुई सङ्ख्याहरूको योग १७ र अन्तर ३ भए ती सङ्ख्याहरू पत्ता लगाउनुहोस्।
If the sum of two numbers is 17 and their difference is 3, find the numbers. [2A]
The solution is
\( x^2 + \dfrac{1}{16} = \dfrac{x}{2} \)
or \( 16x^2 + 16 \cdot \dfrac{1}{16} = 16 \cdot \dfrac{x}{2} \)
or \( 16x^2 + 1 = 8x \)
or \( 16x^2 - 8x + 1 = 0 \)
or\( (4x)^2 - 2(4x)(1) + (1)^2 = 0 \)
or \( (4x - 1)^2 = 0 \)
or \( 4x - 1 = 0 \)
or \( 4x = 1 \)
or \( x = \dfrac{1}{4} \)
\( x^2 + \dfrac{1}{16} = \dfrac{x}{2} \)
or \( 16x^2 + 16 \cdot \dfrac{1}{16} = 16 \cdot \dfrac{x}{2} \)
or \( 16x^2 + 1 = 8x \)
or \( 16x^2 - 8x + 1 = 0 \)
or\( (4x)^2 - 2(4x)(1) + (1)^2 = 0 \)
or \( (4x - 1)^2 = 0 \)
or \( 4x - 1 = 0 \)
or \( 4x = 1 \)
or \( x = \dfrac{1}{4} \)
The solution is
\( \dfrac{3 - 4x}{5} - \dfrac{4 + 5x}{9} + \dfrac{7x + 11}{15} = 0 \)
or \( 9(3 - 4x) - 5(4 + 5x) + 3(7x + 11) = 0 \)
or \( 27 - 36x - 20 - 25x + 21x + 33 = 0 \)
or \( (-36x - 25x + 21x) + (27 - 20 + 33) = 0 \)
or \( (-61x + 21x) + (40) = 0 \)
or \( -40x + 40 = 0 \)
or \( 40 = 40x \)
or \( x = 1 \).
\( \dfrac{3 - 4x}{5} - \dfrac{4 + 5x}{9} + \dfrac{7x + 11}{15} = 0 \)
or \( 9(3 - 4x) - 5(4 + 5x) + 3(7x + 11) = 0 \)
or \( 27 - 36x - 20 - 25x + 21x + 33 = 0 \)
or \( (-36x - 25x + 21x) + (27 - 20 + 33) = 0 \)
or \( (-61x + 21x) + (40) = 0 \)
or \( -40x + 40 = 0 \)
or \( 40 = 40x \)
or \( x = 1 \).
The solution is
\( (x + 1)(x + 2) = x(x + 7) - 6 \)
or \( x^2 + 2x + x + 2 = x^2 + 7x - 6 \)
or \( x^2 + 3x + 2 = x^2 + 7x - 6 \)
or \( 3x + 2 = 7x - 6 \)
or \( 2 + 6 = 7x - 3x \)
or \( 8 = 4x \)
or \( x = 2 \)
\( (x + 1)(x + 2) = x(x + 7) - 6 \)
or \( x^2 + 2x + x + 2 = x^2 + 7x - 6 \)
or \( x^2 + 3x + 2 = x^2 + 7x - 6 \)
or \( 3x + 2 = 7x - 6 \)
or \( 2 + 6 = 7x - 3x \)
or \( 8 = 4x \)
or \( x = 2 \)
The solution is
\( \dfrac{6x - 3}{2x + 7} = \dfrac{3x - 2}{x + 5} \)
or \( (6x - 3)(x + 5) = (3x - 2)(2x + 7) \)
or \( 6x^2 + 30x - 3x - 15 = 6x^2 + 21x - 4x - 14 \)
or \( 6x^2 + 27x - 15 = 6x^2 + 17x - 14 \)
or \( 27x - 17x = -14 + 15 \)
or \( 10x = 1 \)
or \( x = \dfrac{1}{10} \).
\( \dfrac{6x - 3}{2x + 7} = \dfrac{3x - 2}{x + 5} \)
or \( (6x - 3)(x + 5) = (3x - 2)(2x + 7) \)
or \( 6x^2 + 30x - 3x - 15 = 6x^2 + 21x - 4x - 14 \)
or \( 6x^2 + 27x - 15 = 6x^2 + 17x - 14 \)
or \( 27x - 17x = -14 + 15 \)
or \( 10x = 1 \)
or \( x = \dfrac{1}{10} \).
The solution is
Given equations are
\( 2x + y = 6 \) (i)
\( 3x + y = 7 \) (ii)
Subtracting equation (i) from (ii), we get
\( 3x + y=7 \)
\( _{(-)}2x +_{(-)} y = _{(-)}6 \)
\( x = 1 \)
Now, substituting the value of \( x \) in equation (i), we get
\( 2x + y = 6 \)
or \( 2(1) + y = 6 \)
or \( 2 + y = 6 \)
or \( y = 6 - 2 \)
or \( y = 4 \)
Therefore, the values of \( x \) and \( y \) are
\( x = 1 \) and \( y = 4 \)
Given equations are
\( 2x + y = 6 \) (i)
\( 3x + y = 7 \) (ii)
Subtracting equation (i) from (ii), we get
\( 3x + y=7 \)
\( _{(-)}2x +_{(-)} y = _{(-)}6 \)
\( x = 1 \)
Now, substituting the value of \( x \) in equation (i), we get
\( 2x + y = 6 \)
or \( 2(1) + y = 6 \)
or \( 2 + y = 6 \)
or \( y = 6 - 2 \)
or \( y = 4 \)
Therefore, the values of \( x \) and \( y \) are
\( x = 1 \) and \( y = 4 \)
The solution is
\( \dfrac{x}{2} + \dfrac{2}{x} = 2 \)
or \( \dfrac{x \cdot x + 2 \cdot 2}{2x} = 2 \)
or \( \dfrac{x^2 + 4}{2x} = 2 \)
or \( x^2 + 4 = 2 \cdot 2x \)
or \( x^2 + 4 = 4x \)
or \( x^2 - 4x + 4 = 0 \)
or \( (x - 2)^2 = 0 \)
or \( x - 2 = 0 \)
Therefore, the value of \( x \) is
or \( x = 2 \).
\( \dfrac{x}{2} + \dfrac{2}{x} = 2 \)
or \( \dfrac{x \cdot x + 2 \cdot 2}{2x} = 2 \)
or \( \dfrac{x^2 + 4}{2x} = 2 \)
or \( x^2 + 4 = 2 \cdot 2x \)
or \( x^2 + 4 = 4x \)
or \( x^2 - 4x + 4 = 0 \)
or \( (x - 2)^2 = 0 \)
or \( x - 2 = 0 \)
Therefore, the value of \( x \) is
or \( x = 2 \).
The solution is
\( \dfrac{x - 4}{4} + \dfrac{6}{x + 1} = \dfrac{5}{4} \)
Isolating the fraction with x in the denominator:
or \( \dfrac{6}{x + 1} = \dfrac{5}{4} - \dfrac{x - 4}{4} \)
or \( \dfrac{6}{x + 1} = \dfrac{5 - (x - 4)}{4} \)
or \( \dfrac{6}{x + 1} = \dfrac{5 - x + 4}{4} \)
or \( \dfrac{6}{x + 1} = \dfrac{9 - x}{4} \)
or \( 6 \cdot 4 = (9 - x)(x + 1) \)
or \( 24 = 9x + 9 - x^2 - x \)
or \( 24 = -x^2 + 8x + 9 \)
or \( x^2 - 8x + 24 - 9 = 0 \)
or \( x^2 - 8x + 15 = 0 \)
or \( x^2 - (5x + 3x) + 15 = 0 \)
or \( x^2 - 5x - 3x + 15 = 0 \)
or \( x(x - 5) - 3(x - 5) = 0 \)
or \( (x - 5)(x - 3) = 0 \)
Therefore, the values of \( x \) are
or \( x = 5 \) and \( x = 3 \).
\( \dfrac{x - 4}{4} + \dfrac{6}{x + 1} = \dfrac{5}{4} \)
Isolating the fraction with x in the denominator:
or \( \dfrac{6}{x + 1} = \dfrac{5}{4} - \dfrac{x - 4}{4} \)
or \( \dfrac{6}{x + 1} = \dfrac{5 - (x - 4)}{4} \)
or \( \dfrac{6}{x + 1} = \dfrac{5 - x + 4}{4} \)
or \( \dfrac{6}{x + 1} = \dfrac{9 - x}{4} \)
or \( 6 \cdot 4 = (9 - x)(x + 1) \)
or \( 24 = 9x + 9 - x^2 - x \)
or \( 24 = -x^2 + 8x + 9 \)
or \( x^2 - 8x + 24 - 9 = 0 \)
or \( x^2 - 8x + 15 = 0 \)
or \( x^2 - (5x + 3x) + 15 = 0 \)
or \( x^2 - 5x - 3x + 15 = 0 \)
or \( x(x - 5) - 3(x - 5) = 0 \)
or \( (x - 5)(x - 3) = 0 \)
Therefore, the values of \( x \) are
or \( x = 5 \) and \( x = 3 \).
Given lines are:
\( 2x - y = 5 \)
\( y = 2x - 5 \)) (i)
Next
\( x - y = 1 \)
\( y = x - 1 \) (ii)
The solution is \( x = 4 \) and \( y = 3 \)
\( 2x - y = 5 \)
\( y = 2x - 5 \)) (i)
| \( x \) | 4 | 2 | 3 |
| \( y \) | 3 | -1 | 1 |
\( x - y = 1 \)
\( y = x - 1 \) (ii)
| \( x \) | 0 | 1 | 3 |
| \( y \) | -1 | 0 | 2 |
Given lines are:
\( x + y = 6 \)
\( y = -x + 6 \) (i)
Next
\( 2x - y = 9 \)
\( y = 2x - 9 \) (ii)
The solution is \( x = 5 \) and \( y = 1 \)
\( x + y = 6 \)
\( y = -x + 6 \) (i)
| \( x \) | 0 | 3 | 6 |
| \( y \) | 6 | 3 | 0 |
\( 2x - y = 9 \)
\( y = 2x - 9 \) (ii)
| \( x \) | 3 | 4 | 5 |
| \( y \) | -3 | -1 | 1 |
Given lines are:
\( 5x - 3y = 5 \)
\( y = \frac{5x-5}{3} \) (i)
Next
\( -3x + 2y = -2 \)
\( y = \frac{3x-2}{2}\) (ii)
The solution is \( x = 4 \) and \( y = 5 \)
\( 5x - 3y = 5 \)
\( y = \frac{5x-5}{3} \) (i)
| \( x \) | 1 | 4 | -5 |
| \( y \) | 0 | 5 | -10 |
\( -3x + 2y = -2 \)
\( y = \frac{3x-2}{2}\) (ii)
| \( x \) | 0 | 2 | 4 |
| \( y \) | -1 | 2 | 5 |
Given lines are:
\( x + y = 5 \)
\( y = -x + 5 \) (i)
Next
\( x - y = 3 \)
\( y = x - 3 \) (ii)
The solution is \( x = 4 \) and \( y = 1 \)
\( x + y = 5 \)
\( y = -x + 5 \) (i)
| \( x \) | 0 | 2 | 5 |
| \( y \) | 5 | 3 | 0 |
\( x - y = 3 \)
\( y = x - 3 \) (ii)
| \( x \) | 0 | 3 | 4 |
| \( y \) | -3 | 0 | 1 |
Given lines are:
\( x + y = 6 \)
\( y = -x + 6 \) (i)
Next
\( y = x - 4 \)
\( y = x - 4 \) (ii)
The solution is \( x = 5 \) and \( y = 1 \)
\( x + y = 6 \)
\( y = -x + 6 \) (i)
| \( x \) | 0 | 3 | 6 |
| \( y \) | 6 | 3 | 0 |
\( y = x - 4 \)
\( y = x - 4 \) (ii)
| \( x \) | 0 | 4 | 5 |
| \( y \) | -4 | 0 | 1 |
Given lines are:
\( 2x - 1 = y \)
\( y = 2x - 1 \) (i)
Next
\( 3x - 2y = 0 \)
\( y = \frac{3}{2}x \) (ii)
The solution is \( x = 2 \) and \( y = 3 \)
\( 2x - 1 = y \)
\( y = 2x - 1 \) (i)
| \( x \) | 0 | 1 | 2 |
| \( y \) | -1 | 1 | 3 |
\( 3x - 2y = 0 \)
\( y = \frac{3}{2}x \) (ii)
| \( x \) | 0 | 2 | -2 |
| \( y \) | 0 | 3 | -3 |
Given lines are:
\( 5x + 7y = 1 \)
\( y = \frac{1-5x}{7} \) (i)
Next
\( x + 4y = -5 \)
\( x = -5-4y \) (ii)
The solution is \( x = 3 \) and \( y = -2 \)
\( 5x + 7y = 1 \)
\( y = \frac{1-5x}{7} \) (i)
| \( x \) | 3 | -4 | |
| \( y \) | -2 | 3 |
\( x + 4y = -5 \)
\( x = -5-4y \) (ii)
| \( x \) | -5 | -1 | 3 |
| \( y \) | 0 | -1 | -2 |
Given lines are:
\( 2x + y = 2 \)
\( y = -2x + 2 \) (i)
Next
\( x - y = -5 \)
\( y = x + 5 \) (ii)
The solution is \( x = -1 \) and \( y = 4 \)
\( 2x + y = 2 \)
\( y = -2x + 2 \) (i)
| \( x \) | 0 | 1 | -1 |
| \( y \) | 2 | 0 | 4 |
\( x - y = -5 \)
\( y = x + 5 \) (ii)
| \( x \) | -2 | 0 | 2 |
| \( y \) | 3 | 5 | 7 |
The solution is
Let the son's age be \( x \) years.
The father's age is \( y \) years.
Then
First Condition
Father's age is three times the son's age.
\(y=3x\)(i)
Second Condition
Sum of their ages is 40 years
\(x+y=40\)(ii)
Solving (i) and (ii), we get
\(x+y=40\)
or\(x+3x=40\)
or \( 4x = 40 \)
or \( x = 10 \)
\(y=3x = 3 \times 10 = 30 \)
Therefore,
The son's age \( x =10\) years.
The father's age is \( y=30 \) years.
Let the son's age be \( x \) years.
The father's age is \( y \) years.
Then
First Condition
Father's age is three times the son's age.
\(y=3x\)(i)
Second Condition
Sum of their ages is 40 years
\(x+y=40\)(ii)
Solving (i) and (ii), we get
\(x+y=40\)
or\(x+3x=40\)
or \( 4x = 40 \)
or \( x = 10 \)
\(y=3x = 3 \times 10 = 30 \)
Therefore,
The son's age \( x =10\) years.
The father's age is \( y=30 \) years.
The solution is
Let the price of a pen be \( x \) (Rs.)
Let the price of a pencil be \( y \) (Rs.)
Then
First Condition (6 pens and 3 pencils cost Rs. 60):
\( 6x + 3y = 60 \)
or\( 2x + y = 20 \)(i)
Second Condition (5 pens and 2 pencils cost Rs. 48)
\( 5x + 2y = 48 \)(ii)
To solve (i) and (ii), we multiply (i) by (2), and subtract from (ii), then we get
\(5x + 2y = 48 \)
\( _{(-)}4x +_{(-)} 2y = _{(-)}40 \)
\( x = 8 \)
Substituting \( x=8 \) back into (i), we get
\( 2x + y = 20 \)
or\( 2(8) + y = 20 \)
or\(16 + y = 20 \)
or\(y = 4 \)
Therefore,
The price of each pen \( x = \) Rs. 8.
The price of each pencil \( y = \) Rs. 4.
Let the price of a pen be \( x \) (Rs.)
Let the price of a pencil be \( y \) (Rs.)
Then
First Condition (6 pens and 3 pencils cost Rs. 60):
\( 6x + 3y = 60 \)
or\( 2x + y = 20 \)(i)
Second Condition (5 pens and 2 pencils cost Rs. 48)
\( 5x + 2y = 48 \)(ii)
To solve (i) and (ii), we multiply (i) by (2), and subtract from (ii), then we get
\(5x + 2y = 48 \)
\( _{(-)}4x +_{(-)} 2y = _{(-)}40 \)
\( x = 8 \)
Substituting \( x=8 \) back into (i), we get
\( 2x + y = 20 \)
or\( 2(8) + y = 20 \)
or\(16 + y = 20 \)
or\(y = 4 \)
Therefore,
The price of each pen \( x = \) Rs. 8.
The price of each pencil \( y = \) Rs. 4.
The solution is
Let the two numbers be \( x \) and \( y \).
Then
First Condition (The sum of two numbers is 25):
\( x + y = 25 \)(i)
Second Condition (Their difference is 15):
\( x - y = 15 \)(ii)
To solve (i) and (ii), we add equation (i) and (ii):
\( x + y = 25 \)
\( x - y = 15 \)
\( 2x = 40 \)
or \( x = 20 \)
Substituting \( x=20 \) back into (i), we get
\( x + y = 25 \)
or\( 20 + y = 25 \)
or\(y = 25 - 20 \)
or\(y = 5 \)
Therefore,
The first number \( x = 20 \).
The second number \( y = 5 \).
Let the two numbers be \( x \) and \( y \).
Then
First Condition (The sum of two numbers is 25):
\( x + y = 25 \)(i)
Second Condition (Their difference is 15):
\( x - y = 15 \)(ii)
To solve (i) and (ii), we add equation (i) and (ii):
\( x + y = 25 \)
\( x - y = 15 \)
\( 2x = 40 \)
or \( x = 20 \)
Substituting \( x=20 \) back into (i), we get
\( x + y = 25 \)
or\( 20 + y = 25 \)
or\(y = 25 - 20 \)
or\(y = 5 \)
Therefore,
The first number \( x = 20 \).
The second number \( y = 5 \).
The solution is
Let the larger number be \( x \).
Let the smaller number be \( y \).
Then
First Condition (The difference of two numbers is 28):
\( x - y = 28 \)(i)
Second Condition (The larger number is 3 times the smaller):
\( x = 3y \)(ii)
To solve (i) and (ii), we substitute (ii) into (i):
\( x - y = 28 \)
or \( 3y - y = 28 \)
or \( 2y = 28 \)
or \( y = 14 \)
Substituting \( y=14 \) back into (ii), we get
\( x = 3y \)
or\( x = 3 \times 14 \)
or\( x = 42 \)
Therefore,
The larger number \( x = 42 \).
The smaller number \( y = 14 \).
Let the larger number be \( x \).
Let the smaller number be \( y \).
Then
First Condition (The difference of two numbers is 28):
\( x - y = 28 \)(i)
Second Condition (The larger number is 3 times the smaller):
\( x = 3y \)(ii)
To solve (i) and (ii), we substitute (ii) into (i):
\( x - y = 28 \)
or \( 3y - y = 28 \)
or \( 2y = 28 \)
or \( y = 14 \)
Substituting \( y=14 \) back into (ii), we get
\( x = 3y \)
or\( x = 3 \times 14 \)
or\( x = 42 \)
Therefore,
The larger number \( x = 42 \).
The smaller number \( y = 14 \).
The solution is
Let the two numbers be \( 3x \) and \( 5x \).
Condition (The sum is 80):
\( 3x + 5x = 80 \)
or \( 8x = 80 \)
or \( x = 10 \)
Therefore,
The first number \( 3x = 30 \).
The second number \( 5x = 50 \).
Let the two numbers be \( 3x \) and \( 5x \).
Condition (The sum is 80):
\( 3x + 5x = 80 \)
or \( 8x = 80 \)
or \( x = 10 \)
Therefore,
The first number \( 3x = 30 \).
The second number \( 5x = 50 \).
The solution is
Let the two numbers be \( x \) and \( y \).
Then
First Condition (The sum of two numbers is 17):
\( x + y = 17 \)(i)
Second Condition (Their difference is 3):
\( x - y = 3 \)(ii)
To solve (i) and (ii), we add equation (i) and (ii):
\( x + y = 17 \)
\( x - y = 3 \)
\( 2x = 20 \)
or \( x = 10 \)
Substituting \( x=10 \) back into (i), we get
\( x + y = 17 \)
or\( 10 + y = 17 \)
or\(y = 17 - 10 \)
or\(y = 7 \)
Therefore,
The first number \( x = 10 \).
The second number \( y = 7 \).
Let the two numbers be \( x \) and \( y \).
Then
First Condition (The sum of two numbers is 17):
\( x + y = 17 \)(i)
Second Condition (Their difference is 3):
\( x - y = 3 \)(ii)
To solve (i) and (ii), we add equation (i) and (ii):
\( x + y = 17 \)
\( x - y = 3 \)
\( 2x = 20 \)
or \( x = 10 \)
Substituting \( x=10 \) back into (i), we get
\( x + y = 17 \)
or\( 10 + y = 17 \)
or\(y = 17 - 10 \)
or\(y = 7 \)
Therefore,
The first number \( x = 10 \).
The second number \( y = 7 \).
No comments:
Post a Comment