Regular Polygon_Question


Short Questions:

  1. Find the size of interior angle of each angle of the following regular polygons in degrees and grades:
    1. Pentagon
      The interior angle of a regular pentagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 5 \), therefore
      \(\text{Interior angle} = \frac{(5-2) \cdot 180^\circ}{5} = \frac{3 \cdot 180^\circ}{5} = \frac{540^\circ}{5} = 108^\circ\)
    2. Hexagon
      The interior angle of a regular hexagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 6 \), therefore
      \(\text{Interior angle} = \frac{(6-2) \cdot 180^\circ}{6} = \frac{4 \cdot 180^\circ}{6} = \frac{720^\circ}{6} = 120^\circ\)
    3. Heptagon
      The interior angle of a regular heptagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 7 \), therefore
      \(\text{Interior angle} = \frac{(7-2) \cdot 180^\circ}{7} = \frac{5 \cdot 180^\circ}{7} = \frac{900^\circ}{7} \approx 128.57^\circ\)
    4. Octagon
      The interior angle of a regular octagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 8 \), therefore
      \(\text{Interior angle} = \frac{(8-2) \cdot 180^\circ}{8} = \frac{6 \cdot 180^\circ}{8} = \frac{1080^\circ}{8} = 135^\circ\)
    5. Nonagon
      The interior angle of a regular nonagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 9 \), therefore
      \(\text{Interior angle} = \frac{(9-2) \cdot 180^\circ}{9} = \frac{7 \cdot 180^\circ}{9} = \frac{1260^\circ}{9} = 140^\circ\)
    6. Decagon
      The interior angle of a regular decagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 10 \), therefore
      \(\text{Interior angle} = \frac{(10-2) \cdot 180^\circ}{10} = \frac{8 \cdot 180^\circ}{10} = \frac{1440^\circ}{10} = 144^\circ\)
    7. Dodecagon
      The interior angle of a regular dodecagon is
      \(\text{Interior angle} = \frac{(n-2) \cdot 180^\circ}{n}\)
      Here, \( n = 12 \), therefore
      \(\text{Interior angle} = \frac{(12-2) \cdot 180^\circ}{12} = \frac{10 \cdot 180^\circ}{12} = \frac{1800^\circ}{12} = 150^\circ\)
  2. Find the size of exterior angles of the following regular polygons in degrees and grades:
    1. Pentagon
      The exterior angle of a regular pentagon is
      \(\text{Exterior angle} = \frac{360^\circ}{n}\)
      Here, \( n = 5 \), therefore
      \(\text{Exterior angle} = \frac{360^\circ}{5} = 72^\circ\)
    2. Hexagon
      The exterior angle of a regular hexagon is
      \(\text{Exterior angle} = \frac{360^\circ}{n}\)
      Here, \( n = 6 \), therefore
      \(\text{Exterior angle} = \frac{360^\circ}{6} = 60^\circ\)
    3. Heptagon
      The exterior angle of a regular heptagon is
      \(\text{Exterior angle} = \frac{360^\circ}{n}\)
      Here, \( n = 7 \), therefore
      \(\text{Exterior angle} = \frac{360^\circ}{7} \approx 51.43^\circ\)
    4. Octagon
      The exterior angle of a regular octagon is
      \(\text{Exterior angle} = \frac{360^\circ}{n}\)
      Here, \( n = 8 \), therefore
      \(\text{Exterior angle} = \frac{360^\circ}{8} = 45^\circ\)
  3. Find the sum of interior angles of the following polygons in degrees:
    1. Quadrilateral
      The sum of the interior angles of a quadrilateral is
      \(\text{Sum} = (n - 2) \cdot 180^\circ\)
      Here, \( n = 4 \), therefore
      \(\text{Sum} = (4 - 2) \cdot 180^\circ = 2 \cdot 180^\circ = 360^\circ\)
    2. Pentagon
      The sum of the interior angles of a pentagon is
      \(\text{Sum} = (n - 2) \cdot 180^\circ\)
      Here, \( n = 5 \), therefore
      \(\text{Sum} = (5 - 2) \cdot 180^\circ = 3 \cdot 180^\circ = 540^\circ\)
    3. Hexagon
      The sum of the interior angles of a hexagon is
      \(\text{Sum} = (n - 2) \cdot 180^\circ\)
      Here, \( n = 6 \), therefore
      \(\text{Sum} = (6 - 2) \cdot 180^\circ = 4 \cdot 180^\circ = 720^\circ\)
    4. Octagon
      The sum of the interior angles of an octagon is
      \(\text{Sum} = (n - 2) \cdot 180^\circ\)
      Here, \( n = 8 \), therefore
      \(\text{Sum} = (8 - 2) \cdot 180^\circ = 6 \cdot 180^\circ = 1080^\circ\)
  4. From the given exterior angles of regular polygons find the number of sides:
    1. 60°
      Given the exterior angle is \(60^\circ\), the number of sides \(n\) of the regular polygon is
      Exterior angle\(= \frac{360^\circ}{n} \)
      or\(\displaystyle n = \frac{360^\circ}{\text{Exterior angle}} = \frac{360^\circ}{60^\circ} = 6\)
      Therefore, the polygon is a hexagon with 6 sides.
    2. 120°
      Given the exterior angle is \(120^\circ\), the number of sides \(n\) of the regular polygon is
      Exterior angle\(= \frac{360^\circ}{n} \)
      or\(\displaystyle n = \frac{360^\circ}{\text{Exterior angle}} = \frac{360^\circ}{120^\circ} = 3\)
      Therefore, the polygon is a triangle with 3 sides.
    3. 72°
      Given the exterior angle is \(72^\circ\), the number of sides \(n\) of the regular polygon is
      Exterior angle\(= \frac{360^\circ}{n} \)
      or\(\displaystyle n = \frac{360^\circ}{\text{Exterior angle}} = \frac{360^\circ}{72^\circ} = 5\)
      Therefore, the polygon is a pentagon with 5 sides.
    4. 36°
      Given the exterior angle is \(36^\circ\), the number of sides \(n\) of the regular polygon is
      Exterior angle\(= \frac{360^\circ}{n} \)
      or\(\displaystyle n = \frac{360^\circ}{\text{Exterior angle}} = \frac{360^\circ}{36^\circ} = 10\)
      Therefore, the polygon is a decagon with 10 sides.
  5. Find the (i) interior and (ii) exterior angle of the given regular polygons in degrees and radian:
    1. Octagon
      In a regular octagon, we have (\(n = 8\))

      (i) Interior angle:
      In degrees: \(\displaystyle \frac{(8-2) \cdot 180^\circ}{8} = \frac{1080^\circ}{8} = 135^\circ\)
      In radians: \(135^\circ \times \frac{\pi}{180^\circ} = \frac{3\pi}{4} \text{ rad}\)

      (ii) Exterior angle:
      In degrees: \(\displaystyle \frac{360^\circ}{8} = 45^\circ\)
      In radians: \(45^\circ \times \frac{\pi}{180^\circ} = \frac{\pi}{4} \text{ rad}\)
    2. Hexagon
      In a regular hexagon, we have (\(n = 6\))

      (i) Interior angle:
      In degrees: \(\displaystyle \frac{(6-2) \cdot 180^\circ}{6} = \frac{720^\circ}{6} = 120^\circ\)
      In radians: \(120^\circ \times \frac{\pi}{180^\circ} = \frac{2\pi}{3} \text{ rad}\)

      (ii) Exterior angle:
      In degrees: \(\displaystyle \frac{360^\circ}{6} = 60^\circ\)
      In radians: \(60^\circ \times \frac{\pi}{180^\circ} = \frac{\pi}{3} \text{ rad}\)
    3. Pentagon
      For a regular pentagon, we have (\(n = 5\))

      (i) Interior angle:
      In degrees: \(\displaystyle \frac{(5-2) \cdot 180^\circ}{5} = \frac{540^\circ}{5} = 108^\circ\)
      In radians: \(108^\circ \times \frac{\pi}{180^\circ} = \frac{3\pi}{5} \text{ rad}\)

      (ii) Exterior angle:
      In degrees: \(\displaystyle \frac{360^\circ}{5} = 72^\circ\)
      In radians: \(72^\circ \times \frac{\pi}{180^\circ} = \frac{2\pi}{5} \text{ rad}\)

Long Questions:

  1. The angles of a pentagon are in the ratio 2 : 3 : 4 : 5 : 6. Find the angles in
    1. degrees
    2. grades.
    The sum of interior angles of a pentagon is:
    \((5 - 2) \times 180^\circ = 540^\circ\)

    Let the angles be \(2x, 3x, 4x, 5x, 6x\).
    Then:
    \(2x + 3x + 4x + 5x + 6x = 20x = 540^\circ\)
    \(\Rightarrow x = \dfrac{540^\circ}{20} = 27^\circ\)

    (a) Angles in degrees:
    \(2x = 54^\circ\)
    \(3x = 81^\circ\)
    \(4x = 108^\circ\)
    \(5x = 135^\circ\)
    \(6x = 162^\circ\)

    (b) Angles in grades (1° = \(\frac{10}{9}\) grades):
    \(54^\circ = 54 \times \dfrac{10}{9} = 60^g\)
    \(81^\circ = 81 \times \dfrac{10}{9} = 90^g\)
    \(108^\circ = 108 \times \dfrac{10}{9} = 120^g\)
    \(135^\circ = 135 \times \dfrac{10}{9} = 150^g\)
    \(162^\circ = 162 \times \dfrac{10}{9} = 180^g\)
  2. The angles of a hexagon are in the ratio of 1 : 2 : 3 : 4 : 5 : 5. Find the angles in
    1. degrees
    2. grade
    The sum of interior angles of a hexagon is:
    \((6 - 2) \times 180^\circ = 720^\circ\)

    Let the angles be \(x, 2x, 3x, 4x, 5x, 5x\).
    Sum of ratios: \(1x + 2x + 3x + 4x + 5x + 5x = 20x\)
    So:
    \(20x = 720^\circ \Rightarrow x = \dfrac{720^\circ}{20} = 36^\circ\)

    (a) Angles in degrees:
    \(1x = 36^\circ\)
    \(2x = 72^\circ\)
    \(3x = 108^\circ\)
    \(4x = 144^\circ\)
    \(5x = 180^\circ\)
    \(5x = 180^\circ\)

    (b) Angles in grades (since \(1^\circ = \dfrac{10}{9}^g\)):
    \(36^\circ = 40^g\)
    \(72^\circ = 80^g\)
    \(108^\circ = 120^g\)
    \(144^\circ = 160^g\)
    \(180^\circ = 200^g\)
    \(180^\circ = 200^g\)
  3. The angles of an octagon are in the ratio of 1 : 2 : 3 : 2 : 2 : 5 : 6 : 6. Find the angles in
    1. degrees
    2. radian.
    The sum of interior angles of an octagon is:
    \((8 - 2) \times 180^\circ = 1080^\circ\)

    Let the angles be \(1x , 2x , 3x , 2x , 2x , 5x, 6x , 6 x\).
    Sum of ratios: \(1x + 2x + 3x + 2x + 2x + 5x + 6x + 6 x= 27x\)
    Then
    \(27x = 1080^\circ \Rightarrow x = \dfrac{1080^\circ}{27} = 40^\circ\)

    (a) Angles in degrees:
    \(1x =1 \times 40= 40^\circ\)

    \(2x =2 \times 40= 80^\circ\)

    \(3x =3 \times 40= 120^\circ\)

    \(2x =2 \times 40= 80^\circ\)

    \(2x = 2 \times 40= 80^\circ\)

    \(5x = 5 \times 40= 200^\circ\)

    \(6x = 6 \times 40= 240^\circ\)

    \(6x = 6 \times 40= 240^\circ\)


    (b) Angles in radians (using \(\theta_{\text{rad}} = \theta_{\text{deg}} \cdot \frac{\pi}{180}\)):

    \(40^\circ = 40 \times \dfrac{\pi}{180} = \dfrac{2\pi}{9}\)

    \(80^\circ = 80 \times \dfrac{\pi}{180} = \dfrac{4\pi}{9}\)

    \(120^\circ = 120 \times \dfrac{\pi}{180} = \dfrac{2\pi}{3}\)

    \(80^\circ = 80 \times \dfrac{\pi}{180} = \dfrac{4\pi}{9}\)

    \(80^\circ = 80 \times \dfrac{\pi}{180} = \dfrac{4\pi}{9}\)

    \(200^\circ = 200 \times \dfrac{\pi}{180} = \dfrac{10\pi}{9}\)

    \(240^\circ = 240 \times \dfrac{\pi}{180} = \dfrac{4\pi}{3}\)

    \(240^\circ = 240 \times \dfrac{\pi}{180} = \dfrac{4\pi}{3}\)

  4. The ratio of interior and exterior angles of a regular polygon is 2 : 1. Find the number of sides of the polygon. Also express the angles in degrees and radian.
    Given: Interior : Exterior = 2 : 1.

    Let interior angle = \(2x\), exterior angle = \(x\).
    Since they are supplementary:
    \(2x + x = 180^\circ \Rightarrow 3x = 180^\circ \Rightarrow x = 60^\circ\)

    Therefore:
    - Exterior angle = \(60^\circ = 60 \times \dfrac{\pi}{180} = \dfrac{\pi}{3}\) rad
    - Interior angle = \(120^\circ = 120 \times \dfrac{\pi}{180} = \dfrac{2\pi}{3}\) rad

    Number of sides:
    \(n = \dfrac{360^\circ}{\text{Exterior angle}} = \dfrac{360^\circ}{60^\circ} = 6\)

    Hence, the polygon is a regular hexagon with 6 sides.
  5. The ratio of interior and exterior angles of a regular polygon is 7 : 2. Find the number of sides. Also express the angles in degrees and radian.
    Given: Interior : Exterior = 7 : 2.

    Let interior angle = \(7x\), exterior angle = \(2x\).
    Since they are supplementary:
    \(7x + 2x = 180^\circ \Rightarrow 9x = 180^\circ \Rightarrow x = 20^\circ\)

    Therefore:
    - Interior angle = \(7x = 140^\circ = 140 \times \dfrac{\pi}{180} = \dfrac{7\pi}{9}\) rad
    - Exterior angle = \(2x = 40^\circ = 40 \times \dfrac{\pi}{180} = \dfrac{2\pi}{9}\) rad

    Number of sides:
    \(n = \dfrac{360^\circ}{\text{Exterior angle}} = \dfrac{360^\circ}{40^\circ} = 9\)

    Hence, the polygon is a regular nonagon with 9 sides.
  6. Draw a regular octagon of side 3 cm. Find its interior and exterior angles in degrees, grades and radian.
    In a regular octagon, we have \(n=8\)
    Interior angle is
    In degrees: \(\dfrac{(n-2)\times 180}{n}=\dfrac{(8-2)\times 180}{6}=\dfrac{(6)\times 180}{8}=135^\circ\)
    In grades: \(135^\circ \times \dfrac{10}{9} = 150^g\)
    In radians: \(135^\circ \times \dfrac{\pi}{180} = \dfrac{3\pi}{4}\)

    Exterior angle is
    In degrees: \(\dfrac{360^0}{n}=\dfrac{360^0}{8}=45^\circ\)
    In grades: \(45^\circ \times \dfrac{10}{9} = 50^g\)
    In radians: \(45^\circ \times \dfrac{\pi}{180} = \dfrac{\pi}{4}\)
    The construction process is below.
    1. Draw a line segment \(AB=3cm\)
    2. Draw \(135^0\) at B such that \(\measuredangle ABC=135^0\)
    3. Draw \(135^0\) at C such that \(\measuredangle BCD=135^0\)
    4. Similarly, draw a regular octagon \(ABCDEFGH\).

No comments:

Post a Comment