- Study the given Venn diagram and answer the following questions.
 दिइएको भेन चित्र अध्ययन गर्नुहोस् र निम्न प्रश्नहरूको उत्तर दिनुहोस्।
- समूहहरु \(R\) र \(S\) को सदस्यहरुलाई सूचिकरण गर्नुहोस ।
 (List the elements of sets \(R\) and \(S\).)[1]
- समूह \(R\) बाट बन्ने अनुपयुक्त उपसमूहरु लेख्नुहोस ।
 (Write the improper subset formed from the set \(R\).)[1]
- कुन अवस्थामा दिएको समूहहरु \(R\) र \(S\) अलगिएका समुह बन्छन् ?
 (In which condition, the given sets \(R\) and \(S\) become disjoint?)[1]
-     From the Venn diagram, we get that
 \( R = \{a, b, c\} \)
 \( S = \{c, d, e\} \)
- The improper subset formed from set \( R \) is
 \( \{a, b, c\} \)
- Sets \( R \) and \( S \) become disjoint if the element \( c \) is removed from either \( R \) or \( S \) (or both).
- दिएको भेनचित्र अवलोकन गर्नुहोस। Observe the Given Venn Diagram
- समूह \(A\) र \(B\) को प्रतिच्छेदन समुहमा कुन कुन सदस्यहरु पर्दछन ?
 (What are the elements of the intersection of set \(A\) and set \(B\)?)[1]
- समूह \(A = \{a, b, c, e\}\) बाट बन्ने कुनै दुईवटा उपयुक्त उपसमूहहरु लेख्नुहोस ।[1]
 (Write any two proper subsets which can be made from set \(A = \{a, b, c, e\}\).)
- समूह \(A\) र \(B\) खप्टिएका समुह हुन। यिनलाई अलगिएका समुहहरु बनाउन के गर्नुपर्छ। नयाँ बनेका अलगिएका समुहहरु लेख्नुहोस ।
 (Set \(A\) and set \(B\) are overlapping sets. What should be done to make them disjoint sets? Write the newly formed disjoint sets.)[1]
- From the Venn diagram, we get that
 \( A \cap B = \{a, b\} \)
- Any two proper subsets of \( A = \{a, b, c, e\} \) are
 \( \{a, b\} \)
 \( \{c, e\} \)
- To make sets \( A \) and \( B \) disjoint, we must remove the common elements \( a \) and \( b \) from either \( A \) or \( B \) (or both).
 One possible way is:
 New \( A = \{c, e\} \)
 New \( B = \{d, f\} \)
- Study the given Venn diagram and answer the following questions
 दिइएको भेन चित्र अध्ययन गर्नुहोस् र निम्न प्रश्नहरूको उत्तर दिनुहोस्।
- अनुपयुक्त उपसमूहलाई परिभाषा गर्नुहोस ।
 (Define improper subset.)[1]
- समूह \(B\) को कति ओटा उपसमूह बनाउन सकिन्छ ? सुत्र प्रयोग गरी पत्ता लगाउनुहोस ।
 (How many subsets of set \(B\) can be made? Find using the formula.)[1]
- समूह \(A\) र \(B\) खप्टिएका वा अलगिएका समूहहरु हुन् ? कारण सहित लेख्नुहोस ।
 (What type of sets are \(A\) and \(B\): overlapping or disjoint sets? Write with reason.)[1]
- An improper subset of a set is the set itself.
- From the Venn diagram, set \( B = \{1, 3, 5, 7, 9\} \), so it has 5 elements.
 The number of subsets of a set with \( n \) elements is \( 2^n \).
 Number of subsets of \( B = 2^5 = 32 \)
- Sets \( A \) and \( B \) are overlapping sets.
 Because they have common elements \( \{1, 3\} \), i.e., \( A \cap B \neq \emptyset \).
- समूह \(M\) र \(N\) का सदस्यहरू छेउको भेन चित्रमा  देखाइएको छ।
 The elements of sets \(M\) and \(N\) are shown in the Venn diagram alongside.
- समूह \(M\) र \(N\) का सबै सम्भावित उचित (proper) र अनुचित (improper) उपसमूहहरू लेख्नुहोस्।
 Write all possible proper and improper subsets of sets \(M\) and \(N\).[1]
- दिइएका समूह \(M\) र \(N\) का उपसमूहहरूको संख्या बराबर छ वा छैन, लेख्नुहोस?
 Are the subsets of the given sets \(M\) and \(N\) equal in number?[1]
- समूह \(M\) को कुन सदस्य हटाउँदा समुहहरु \(M\) र \(N\) अलगिएका समुह  बन्छन्?
 Which member of set \(M\) must be removed to make \(M\) and \(N\) disjoint sets?[1]
- From the Venn diagram:
 \( M = \{a, b, c\} \)
 \( N = \{b, d, f\} \)
 Subsets of \( M \) are
 
 Subsets of \( N \) areNumber of Elements Subsets Count 0 ∅ 1 1 {a}, {b}, {c} 3 2 {a, b}, {a, c}, {b, c} 3 3 {a, b, c} 1 Total Subsets 8 
 Number of Elements Subsets Count 0 ∅ 1 1 {b}, {d}, {f} 3 2 {b, d}, {b, f}, {d, f} 3 3 {b, d, f} 1 Total Subsets 8 
- Yes, the number of subsets of sets \( M \) and \( N \) are equal.
 Both sets have 3 elements, so each has \( 2^3 = 8 \) subsets.
- To make \( M \) and \( N \) disjoint, the common element \( b \) must be removed from set \( M \).
 Removing \( b \) from \( M \) gives \( M = \{a, c\} \), and then \( M \cap N = \emptyset \).
- प्रश्नमा (Given)
 \(P = \{\text{Prime numbers less than } 10\}\)
 \(Q = \{\text{Odd numbers less than } 8\}\)
 \(R = \{\text{Prime factors of } 6\}\)
 \(S = \{\text{Cube numbers between } 10 \text{ and } 20\}\)
- माथिका चार समूहहरूमध्ये कुन-कुन समुहहरु समतुल्य (equivalent) समूह हुन्?
 Which of the four sets are equivalent sets?[1]
- समूह \(R\) का उपसमूहहरू लेख्नुहोस्।
 Write the subsets of set \(R\).[1]
- समूह \(P\) को उपयुख्त उपसमूह समूह \(S\) हो वा होईन? कारणसहित लेख्नुहोस्।
 Is the set \(S\) a proper subset of set \(P\)? Write with reason.[1]
- First, list all sets:
 \( P = \{2, 3, 5, 7\} \) → 4 elements
 \( Q = \{1, 3, 5, 7\} \) → 4 elements
 \( R = \{2, 3\} \) → 2 elements
 \( S = \{\} = \emptyset \) → 0 elements (no cube numbers between 10 and 20)
 Equivalent sets have the same number of elements.
 So, \( P \) and \( Q \) are equivalent sets.
- Set \( R = \{2, 3\} \)
 Subsets of \( R \) are:
 \( \emptyset, \{2\}, \{3\}, \{2, 3\} \)
- Yes, \( S \) is a proper subset of \( P \), because \( S = \emptyset \).
- एक भेन चित्र दिइएको छ। Given a Venn diagram
- उपयूक्त उपसमूह भन्नाले के जनाउँछ?
 Define proper subset.[1]
- समुह  \( L \) को अनुपयुक्त उपसमूह लेख्नुहोस ।
 Write the improper subset of \( L \).[1]
- यदि सदस्यहरु \( a, e , i ,o , u \) समुह \( M \) को मात्र हुन् भने, \( L \) र \( M \) कस्ता प्रकारका समूह हुन्? कारणसहित लेख्नुहोस्।
 If \( a, e , i ,o , u \) are the members of set \( M \) only, then what type of set are \( L \) and \( M \)? Write with reason.[1]
- A proper subset of a set is a subset that contains some, but not all, elements of the given set. In other words, 
 Set \( A \) is a proper subset of set \( B \) if every element of \( A \) is in \( B \), and \( A \neq B \)
- From the Venn diagram, set \( L = \{a, b, c\} \).
 The improper subset of \( L \) is the set L itself, which is
 \( \{a, b, c\} \)
- If \( a, e, i, o, u \) are members of set \( M \) only, then, \( L \) and \( M \) are disjoint sets because \( L \cap M = \emptyset \).
- संगैको भेन चित्रलाई हेरि तलका प्रश्नहरूको उत्तर दिनुहोस्।
 Look at the adjoining Venn diagram and answer the following questions:
- समुह \( A \) र \( B \) अलगिएका समुह हुन की खप्टिएका पहिचान गर्नुहोस्।
 Identify whether the sets \( A \) and \( B \) are disjoint or overlapping.[1]
- समुह \( B \) का उपयुक्त उप-समुहहरूको सूची तयार गर्नुहोस्।
 Prepare the list of the proper subsets of set \( B \).[1]
- दिइएका समुहहरूलाई अलगिएका समुह बनाउन के कस्तो समायोजन आवश्यक छ?
 What adjustments are needed to ensure the given sets are disjoint?[1]
- From the Venn diagram, sets \( A \) and \( B \) share common elements \( \{4, 5\} \).
 Therefore, \( A \) and \( B \) are overlapping sets.
- From the diagram, set \( B = \{4, 5, 6, 7\} \).
 Proper subsets of \( B \) are all subsets except \( B \) itself. So, list of the proper subsets of set \( B \) are
 Number of Elements Subsets Count 0 ∅ 1 1 {4}, {5}, {6}, {7} 4 2 {4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7} 6 3 {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7} 4 Total 15 
- To make sets \( A \) and \( B \) disjoint, the common elements \( 4 \) and \( 5 \) must be removed from either \( A \) or \( B \) (or both).
- संगैको भेन चित्रलाई हेरि तलका प्रश्नहरूको उत्तर दिनुहोस्।
 Look at the adjoining Venn diagram and answer the following questions:
- समुह \( A \) र \( B \) अलगिएका समुह हुन की खप्टिएका पहिचान गर्नुहोस्।
 Identify whether the sets \( A \) and \( B \) are disjoint or overlapping.[1]
- समुह \( B \) का उपयुक्त उप-समुहहरूको सूची तयार गर्नुहोस्।
 Prepare the list of the proper subsets of set \( A \).[1]
- दिइएका समुहहरूलाई खप्टिएका समुह बनाउन के कस्तो समायोजन आवश्यक छ?
 What adjustments are needed to ensure the given sets are overlaping?[1]
- From the Venn diagram, the circles for sets \( A \) and \( B \) do not overlap, and there are no common elements shown between them.
 Therefore, \( A \) and \( B \) are disjoint sets.
- From the diagram, set \( A = \{x, y, z\} \).
 Proper subsets of \( A \) are all subsets except \( A \) itself. which are
 Number of Elements Subsets Count 0 ∅ 1 1 {x}, {y}, {z} 3 2 {x, y}, {x, z}, {y, z} 3 Total Subsets 7 
- It is needed to have some ellement in common then 
 Thus, \( A \cap B \ne \emptyset \)
- संगैको भेन चित्रलाई हेरि तलका प्रश्नहरूको उत्तर दिनुहोस्।
 Study the Venn diagram given alongside and answer the following questions:
- समुह \( P \) र \( Q \) अलगिएका छन् कि खप्टिएका छन  पहिचान गर्नुहोस्।
 Identify whether the sets \( P \) and \( Q \) are disjoint or overlapping.[1]
- समुह \( P \) र \( Q \) का साझा सदस्यहरुको समुह के हो?
 What is the set of common elements in sets \( P \) and \( Q \)?[1]
- समुह \( P \) बाट कुन सदस्यहरु हटाउदा समुह \( P \) र \( Q \) अलगिएका समुह हुन्छन?
 Which elements from the set \( P \) need to be removed in order to make sets \( P \) and \( Q \) disjoint?[1]
- From the Venn diagram, sets \( P \) and \( Q \) share the elements \( 6 \) and \( 7 \) in the overlapping region.
 Therefore, \( P \) and \( Q \) are overlapping sets.
- The common elements of sets \( P \) and \( Q \) are the elements in the intersection region.
 \( P \cap Q = \{6, 7\} \)
- To make sets \( P \) and \( Q \) disjoint, the common elements must be removed from set \( P \).
 Remove \( 6 \) and \( 7 \) from \( P \).
- Study the given Venn diagram and answer the following questions.
- List the elements of \( A \).(1)
- If there were no common members in \( A \) and \( B \), what types of sets would they be?(1)
- Write the improper subset of set \( B \).(1)
- From the Venn diagram, the elements of set \( A \) are:
 \( A = \{1, 2, 3, 5, 7\} \)
- If there were no common members in \( A \) and \( B \), then they would be disjoint sets.
- From the diagram, set \( B = \{1, 5, 8, 9, 10\} \).
 The improper subset of \( B \) is the set itself, which is
 \( \{1, 5, 8, 9, 10\} \)
- दिएको भेन चित्र अध्ययन गर्नुहोस् र निम्नलिखित प्रश्नहरूको उत्तर दिनुहोस ।
 Study the given Venn diagram and answer the following questions.
- समूह A का सदस्यहरू लेख्नुहोस |
 List the elements of set A.(1)
- समूह A र B को प्रतिच्छेदन \((A \cap B)\) का सदस्यहरू लेख्नुहोस|
 List the elements of the intersection of sets A and B i.e. \((A \cap B)\).(1)
- समूह A मा रहेका तर B मा नरहेका सदस्यहरू \((A-B)\) लेख्नुहोस|
 List the elements that are in set A but not in set B i.e. \((A-B)\).
- From the Venn diagram, the elements of set \( A \) are:
 \( A = \{2, 3, 5, 7, 9\} \)
- The intersection \( A \cap B \) consists of elements common to both \( A \) and \( B \).
 \( A \cap B = \{2\} \)
- The elements in \( A \) but not in \( B \) are those only in the left part of circle \( A \):
 \( A - B = \{3, 5, 7, 9\} \)
- दिएको भेनचित्र हेरी तल्ला प्रश्नहरूको उत्तर दिनुहोस|
 Look at the given Venn diagram and answer the following questions.
- समूह \(A\) र समूह \(B\) कस्ता प्रकारको समुहहरू हुन?
 What types of sets are Set \(A\) and Set \(B\)?(1)
- समूह \(B\) बाट कति ओटा उपसमुहहरू बन्छन?
 How many subsets can be formed from Set \(B\)?(1)
- \(A\) र \(B\) सर्वव्यापक समूह \(U\) का उपसमूहहरू भए यसलाई सांकेतिक रूपमा लेख्नुहोस |(1)
 If \(A\) and \(B\) are subsets of the universal set \(U\), write this in symbolic form.
- From the Venn diagram, sets \( A \) and \( B \) have common elements \( \{e, f\} \).
 Therefore, \( A \) and \( B \) are overlapping sets.
- From the diagram, set \( B = \{b, e, f, g, h\} \), which has 5 elements.
 The number of subsets of a set with \( n \) elements is \( 2^n \).
 Number of subsets of \( B = 2^5 = 32 \)
- Since both \( A \) and \( B \) are contained within the universal set \( U \), we write:
 \( A \subseteq U \) and \( B \subseteq U \)
- दिएको भेनचित्रबाट सोधिका प्रश्नहरूको उत्तर दिनुहोस् |
 From the given Venn diagram answer the following questions.
- उपयुक्त उपसमूह भनेको के हो ?
 What is proper subset?(1)
- \( P \) का सदस्य सङ्ख्या लेख्नुहोस् |
 Write the number of elements of \( P \).(1)
- \( Q \) बाट बन्ने सबै उपसमूहहरु बनाउनुहोस् |
 Make all subsets of set \( Q \).(1)
- A proper subset of a set is a subset that contains some but not all elements of the original set. In other words, set \( A \) is a proper subset of set \( B \) if every element of \( A \) is in \( B \), and \( A \neq B \).
 Symbolically, \( A \subset B \) and \( A \neq B \).
- From the Venn diagram, set \( P = \{a, b, c,d, e\} \).
 Number of elements in \( P = 5 \)
- From the diagram, set \( Q = \{c, d\} \).
 All subsets of \( Q \) are:
 \( \emptyset, \{c\}, \{d\}, \{c, d\} \)
- दिएको भेनचित्रबाट सोधिका प्रश्नहरूको उत्तर दिनुहोस् |
 From the given Venn diagram answer the following questions.
- समुह A को सदस्यहरु लेख्नुहोस ?
 Write the elements of set A(1)
- \( A \) र \( B \)  को सम्बन्ध संकेतमा लेख्नुहोस् |
 Write relation between A and B in symbol.(1)
- \( B \) मा नभएका सदस्यहरु लेख्नुहोस  |
 Write elements which are not in B(1)
- From the Venn diagram, the elements of set \( A \) are:
 \( A = \{1, 2, 3,4,5, 6\} \)
- Sets \( B \) is subset of \( A \) 
 \( B \subset A \)
- The elements not in set \( B \) are 
 \( \{1,2,5,6\} \)
- दिएको भेनचित्रबाट सोधिका प्रश्नहरूको उत्तर दिनुहोस् |
 From the given Venn diagram answer the following questions.
- समुह A को सदस्य सँख्या लेख्नुहोस ?
 Write the cardinality of set A(1)
- उपसमुह भनेको के हो? लेख्नुहोस् |
 What is subset, write.(1)
- समुह \( A \) बाट बन्ने 2 सदस्य हुने सबै उपसमुहहरु लेख्नुहोस  |
 Write all subsets of A containing 2 elements(1)
- From the Venn diagram, set \( A = \{q,r,s, t\} \).
 Cardinality of set \( A = 4 \)
- A subset is a set whose every element is also an element of another set. If all elements of set \( A \) are in set \( B \), then \( A \) is a subset of \( B \), written as \( A \subseteq B \)
- Set \( A = \{q,r,s, t\} \) has 4 elements, so any twwo subsets of A are
 \(\{s, t\} \) and \(\{q, r\} \)
- दिएको भेनचित्रबाट सोधिका प्रश्नहरूको उत्तर दिनुहोस् |
 From the given Venn diagram answer the following questions.
- भेनचित्रमा कुन प्रकारका समूहहरू छन् ?
 Which type of sets are shown in the Venn diagram?(1)
- \( A \) का सदस्य सङ्ख्या लेख्नुहोस् |
 Write the number of elements of \( A \).(1)
- \( B \) बाट बन्ने कुनै एक उपसमूह लेख्नुहोस् |
 Make one subset of set \( B \).(1)
- From the Venn diagram, sets \( A \) and \( B \) have no common elements (no overlapping region with elements).
 Therefore, \( A \) and \( B \) are disjoint sets.
- From the Venn diagram, set \( A = \{1, 2, 3\} \).
 Number of elements of \( A = 3 \)
- From the diagram, set \( B = \{5, 7, 9\} \).
 One subset of \( B \) is:
 \( \{5, 7\} \)
- समूहहरू \(P = \{l, o, v, e\}\) र \(Q = \{h, a, t, e\}\) दिइएको छ । (Given the set \(P = \{l, o, v, e\}\) and \(Q = \{h, a, t, e\}\).)
- समूह \(P\) र \(Q\) खप्टिएको वा अलगिएका कस्ता खालका समूह हुन् ? लेख्नुहोस् ।
 (What types of set \(P\) and set \(Q\) are—overlapping or disjoint? Write.)[1]
- \(Q\) को 2 वटा उपयुक्त उपसमूहहरू लेख्नुहोस् ।
 (Write any two proper subsets of set \(Q\).)[1]
- \(P\) र \(Q\) लाई अलगिएका समूह बनाउन समूह \(P\) बाट कुन सदस्य हटाउनु पर्छ ?
 (What member of set \(P\) need to be removed to make set \(P\) and \(Q\) disjoint sets?)[1]
- Sets \( P = \{l, o, v, e\} \) and \( Q = \{h, a, t, e\} \) both contain the common element \( e \).
 Therefore, \( P \) and \( Q \) are overlapping sets.
- Two proper subsets of \( Q = \{h, a, t, e\} \) are:
 \( \{h, a\} \)
 \( \{t\} \)
- To make \( P \) and \( Q \) disjoint, the common element \( e \) must be removed from set \( P \).
 Remove \( e \) from \( P \).
- Answer the following questions on the basis of the Venn diagram alongside.
- Write whether sets \(N\) and \(M\) are overlapping or disjoint?[1]
- Write an improper subset of set \(N\).[1]
- Which social media to be removed such that sets \(N\) and \(M\) are disjoint?[1]
- From the Venn diagram, sets \( N \) and \( M \) share the common element "TT" in the overlapping region.
 Therefore, \( N \) and \( M \) are overlapping sets.
- From the diagram, set \( N = \{F, TT\} \).
 The improper subset of \( N \) is the set itself:
 \( \{F, TT\} \)
- To make sets \( N \) and \( M \) disjoint, the common element "TT" must be removed from set \( N \) (or from \( M \)).
 Remove "TT" from set \( N \).
- सर्वव्यापक समूह \( U = \{a, b, c, d, e\} \) का दुई उपसमूहहरू \( D = \{a, b, c\} \) र \( E = \{a, b, c, d, e\} \) छन् ।
 (Given universal set \( U = \{a, b, c, d, e\} \), two subsets are \( D = \{a, b, c\} \) and \( E = \{a, b, c, d, e\} \).)
- D र E मध्ये कुन उपयुक्त र कुन अनुपयुक्त उपसमूह हुन्, लेख्नुहोस् ।
 (Between D and E, which one is the proper subset and which one is the improper subset of U? Write it.)[1K]
- समूह E का कति ओटा उपसमूह बन्छन् ? लेख्नुहोस् ।
 (How many subsets of set E can be formed? Write it.)[1HA]
- समूहहरू D र E लाई भेनचित्रमा देखाउनुहोस् र यी दुई समूह कस्ता समूह हुन्, लेख्नुहोस् ।
 (Show sets D and E in a Venn diagram and write what type of sets are D and E.)[1U]
- From the given sets:
 \( D = \{a, b, c\} \) is a proper subset of \( U \) because \( D \subset U \) and \( D \neq U \).
 \( E = \{a, b, c, d, e\} \) is an improper subset of \( U \) because \( E = U \).
- Set \( E \) has 5 elements.
 Number of subsets of \( E = 2^5 = 32 \)
- Sets \( D \) and \( E \) in Venn-diagram
 Here
 Since all elements of \( D \) are in \( E \), the set \( D \) is a subset of \( E \)
 
-  A र B सर्वव्यापक समूह \( U =\) {x : x एउटा 20 भन्दा सानो प्राकृतिक सङ्ख्या हुन्} का उपसमूहहरू हुन् । यदि \( A \)= 2 का अपवर्त्यहरू} र \( B = \) रूढ सङ्ख्याहरू} छन् ।
 (A and B are subsets of the universal set \( U = \{x : x \text{ is a natural number less than } 20\} \). If \( A = \{\text{multiples of } 2\} \) and \( B = \{\text{prime numbers}\} \).)
- समूह A र B लाई सूचीकरण विधिमा लेख्नुहोस् र यी खण्डिएका वा अलगिएका कस्ता समूह हुन्, लेख्नुहोस् ।
 (List the elements of sets A and B, then write whether these two sets are overlapping sets or disjoint sets.)[1A]
- माथिका समूहहरूलाई भेनचित्रमा देखाउनुहोस् ।
 (Show the above sets in a Venn diagram.)[1U]
- समूह A का कुनै चारओटा चार सदस्यिय उपसमूहहरू बनाउनुहोस् ।
 (Make four subsets of set A having four members.)[1HA]
- Elements of sets:
 \( A = \{2, 4, 6, 8, 10, 12, 14, 16, 18\} \)
 \( B = \{2, 3, 5, 7, 11, 13, 17, 19\} \)
 They share element 2 → so they are overlapping sets.
- Venn diagram:
 
- Four subsets of A with four members are
 \( \{2, 4, 6, 8\} \)
 \( \{4, 6, 8, 10\} \)
 \( \{8, 10, 12, 14\} \)
 \( \{10, 12, 14, 16\} \)
- सर्वव्यापक समूह \( U = \{1, 2, 3, 4, 5, 6\} \) का उपसमूहहरू \( P = \{2, 3, 4\} \) र \( Q = \{1, 2, 4\} \) छन् ।
 (P = {2, 3, 4} and Q = {1, 2, 4} are subsets of the universal set U = {1, 2, 3, 4, 5, 6}.)
- समूहहरू P र Q खण्डिएका वा अलगिएका कस्ता समूह हुन्? लेख्नुहोस् ।
 (What type of sets are P and Q — overlapping or disjoint?)[1K]
- समूह P का दुई सदस्यिय सबै उपसमूहहरू लेख्नुहोस् ।
 (Write all subsets of set P with two members.)[1A]
- समूहहरू U, P र Q लाई भेनचित्रमा देखाउनुहोस् ।
 (Show sets U, P and Q in a Venn diagram.)[1U]
- Set \( P = \{2, 3, 4\} \), Set \( Q = \{1, 2, 4\} \)
 Common elements: 2 and 4 → so they are overlapping sets.
- All 2-member subsets of P are
 \( \{2, 3\} \)
 \( \{2, 4\} \)
 \( \{3, 4\} \)
- Venn diagram is as below
 
- दिइएको भेनचित्र अध्ययन गरी तल सोधिएका प्रश्नहरूको उत्तर दिनुहोस् ।
 (Study the given Venn diagram and answer the questions asked below.)
- सर्वव्यापक समूह U लाई सूचीकरण विधिबाट लेख्नुहोस् ।
 (List the elements of the universal set U.)[1A]
- M र N अलगिएका वा खण्डिएका कस्ता समूह हुन्, कारणसहित लेख्नुहोस् ।
 (What type of sets are M and N — overlapping or disjoint sets? Write with reason.)[1A]
- समूह M का कति ओटा उपसमूह बनाउन सकिन्छ? लेख्नुहोस् ।
 (How many subsets of set M can be formed? Write it.)[1HA]
- From the Venn diagram, the universal set \( U \) contains all elements shown inside and outside the circles.
 \( U = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30\} \)
- Sets \( M \) and \( N \) share common elements \( 6 \) and \( 12 \) in the overlapping region.
 Therefore, \( M \) and \( N \) are overlapping sets.
- Set \( M = \{3, 6, 9, 12, 15\} \), which has 5 elements.
 Number of subsets of \( M = 2^5 = 32 \)
- सर्वव्यापक समूह \( U = \{1, 2, 3, 4, 5, 6\} \) का दुईओटा उपसमूहहरू \( A = \{1, 3, 4, 5\} \) र \( B = \{2, 3, 5\} \) छन् ।
 (Two subsets of the universal set \( U = \{1, 2, 3, 4, 5, 6\} \) are \( A = \{1, 3, 4, 5\} \) and \( B = \{2, 3, 5\} \).)
- समूह A र B खण्डिएका वा अलगिएका कस्ता समूह हुन्? कारणसहित लेख्नुहोस् ।
 (Are sets A and B overlapping or disjoint sets? Write with reason.)[1K]
- समूह A का एक सदस्यिय उपसमूहहरू लेख्नुहोस् ।
 (Write all the subsets of set A having single element.)[1A]
- समूहहरू U, A र B लाई भेनचित्रमा देखाउनुहोस् ।
 (Show sets U, A and B in a Venn diagram.)[1U]
- Sets \( A = \{1, 3, 4, 5\} \) and \( B = \{2, 3, 5\} \) have common elements \( 3 \) and \( 5 \).
 Since \( A \cap B = \{3, 5\} \neq \emptyset \), they are overlapping sets.
- All single-element subsets of set \( A = \{1, 3, 4, 5\} \) are:
 \( \{1\}, \{3\}, \{4\}, \{5\} \)
- Venn diagram is as below
 
- सर्वव्यापक समूह \( U = \{a, e, i, o, u\} \) का दुईओटा उपसमूहहरू \( R = \{a, i, o\} \) र \( S = \{i, o, u\} \) छन् ।
 (Two subsets of the universal set \( U = \{a, e, i, o, u\} \) are \( R = \{a, i, o\} \) and \( S = \{i, o, u\} \).)
- समूह R र S खण्डिएका वा अलगिएका कस्ता समूह हुन्? लेख्नुहोस् ।
 (What type of sets are R and S — overlapping or disjoint?)[1K]
-  माथिका समुहहरुलाई भेनचित्रमा देखाउनुहोस् ।
 (Show above sets in venn-diagram)[1A]
- समूह R र S का कुनै दुईवटा साझा उपसमुहहरु लेख्नुहोस् ।
 (Wtite any two subsets which are formed from both R and S)[1U]
- Sets \( R = \{a, i, o\} \) and \( S = \{i, o, u\} \) share common elements \( i \) and \( o \).
 Since \( R \cap S = \{i, o\} \neq \emptyset \), they are overlapping sets.
- The venn-diagram is as below.
- The common elements of \( R \) and \( S \) are \( \{i, o\} \). Any subsets formed from these common elements are subsets of both \( R \) and \( S \). Two such subsets are:
 \( \{i\} \)
 \( \{i, o\} \)
- सर्वव्यापक समूह \( U =\) {x : x एउटा  8  भन्दा सानो प्राकृतिक सङ्ख्या हो} का उपसमूहहरू \( F = \{1, 2, 3\} \) र \( G = \{2, 3, 5\} \) छन् ।
 (The subsets of the universal set \( U = \{x : x \text{ is a natural number less than } 8\} \) are \( F = \{1, 2, 3\} \) and \( G = \{2, 3, 5\} \).)
- सर्वव्यापक समूह U लाई सूचीकरण विधिबाट लेख्नुहोस् र समूहहरू F र G कस्ता समूह हुन्, कारणसहित लेख्नुहोस् ।
 (Write the universal set U in a listing method. Also write with reason that what type of sets F and G are — disjoint or overlapping sets.)[1A]
- समूहहरू F र G का कति ओटा उपसमूह बनाउन सकिन्छ? लेख्नुहोस् ।
 (How many subsets of set F and G can be made?)[1HA]
- कुनै समूहको अनुपयुक्त उपसमूह भनेको कस्तो समूह हो ?
 (What is the improper subset of a set?)[1K]
- Natural numbers less than 8 are: 1, 2, 3, 4, 5, 6, 7.
 So, \( U = \{1, 2, 3, 4, 5, 6, 7\} \)
 Sets \( F = \{1, 2, 3\} \) and \( G = \{2, 3, 5\} \) share common elements \( 2 \) and \( 3 \).
 Since \( F \cap G = \{2, 3\} \neq \emptyset \), they are overlapping sets.
- Set \( F \) has 3 elements → Number of subsets = \( 2^3 = 8 \)
 Set \( G \) has 3 elements → Number of subsets = \( 2^3 = 8 \)
 So, 8 subsets can be formed from each of F and G.
- An improper subset of a set is the set itself. 
 For example, the improper subset of \( \{1, 2, 3\} \) is \( \{1, 2, 3\} \).
- A र B सर्वव्यापक समूह U का उपसमूहहरू हुन् । यदि \( U =\) {x : x  एउटा  10  भन्दा सानो पूर्ण सङ्ख्या हो} , \( A =\) {y : y एउटा  10  भन्दा सानो विषम सङ्ख्या हो} र \( B =\) {z : z  एउटा  10  भन्दा सानो रूढ सङ्ख्या हो} ।
 (A and B are the subsets of the universal set U. If \( U = \{x : x \text{ is a whole number less than } 10\} \), \( A = \{y : y \text{ is an odd number less than } 10\} \) and \( B = \{z : z \text{ is a prime number less than } 10\} \).)
- माथिका समूहहरूलाई सूचीकरण विधिमा लेख्नुहोस् ।
 (List the elements of the above sets.)[1A]
- समुह A र B खप्टिएका वा अलगिएका कस्ता समूह हुन्, लेख्नुहोस् ।
 (What type of sets are A and B — overlapping or disjoint? Write it.)[1K]
- समूह B का दुई सदस्यिय उपसमूहहरू लेख्नुहोस् ।
 (Write the subsets of set B with two elements.)[1HA]
- Whole numbers less than 10: \( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \)
 Odd numbers less than 10: \( 1, 3, 5, 7, 9 \)
 Prime numbers less than 10: \( 2, 3, 5, 7 \)
 \( U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
 \( A = \{1, 3, 5, 7, 9\} \)
 \( B = \{2, 3, 5, 7\} \)
- Sets \( A \) and \( B \) share common elements \( 3, 5, 7 \).
 Since \( A \cap B = \{3, 5, 7\} \neq \emptyset \), they are overlapping sets.
- Set \( B = \{2, 3, 5, 7\} \).
 Some 2-element subsets of \( B \) are:
 \( \{2, 3\} \)
 \( \{5, 7\} \)
- एउटा भेनचित्र दिइएको छ । (A Venn diagram is given.)
- अनुपयुक्त उपसमूह लाई परिभाषित गर्नुहोस् । Define improper subset.[1K]
- समूह B का 2 सदस्यिय उपयुक्त उपसमूहहरू लेख्नुहोस् ।
 (Write proper subsets of set B with two members.)[1U]
- समूहहरू A र B खण्डिएका समूहहरू हुन् । समर्थन गर्नुहोस् ।
 (Sets A and B are overlapping sets. Justify it.)[1HA]
- 
            अनुपयुक्त उपसमूह लाई परिभाषित गर्नुहोस् । (Define improper subset.)[1K]
            
 An improper subset is a subset of a set that includes all the elements of the original set, i.e., the set itself.
- 
            समूह B का 2 सदस्यिय उपयुक्त उपसमूहहरू लेख्नुहोस् ।
 (Write proper subsets of set B with two members.)[1U]
 The proper subsets of set S with two members are {9, 10}, {9, 12}, and {10, 12}.
- 
            समूहहरू A र B खण्डिएका समूहहरू हुन् । समर्थन गर्नुहोस् ।
 (Sets A and B are overlapping sets. Justify it.)[1HA]
 Sets A and B are overlapping because they have a common element, 9, as indicated by their non-empty intersection (R ∩ S = {9}).
-  P = {a, r, e} र Q = {a, r, t} सर्वव्यापक समूह U = {a, r, t, e, s} का उपसमूहहरू हुन् ।
 (P = {a, r, e} and Q = {a, r, t} are subsets of the universal set U = {a, r, t, e, s}.)
- उपयुक्त समूहलाई परिभाषित गर्नुहोस् । Define proper subset.[1K]
- यो कुन समूह हो जुन सबै समूहहरूको उपसमूह हो ?
 (What is the set which is subset of every set?)[1U]
- यदि समूह P = {e, s} भएको भए, समूहहरू P र Q बीचको सम्बन्ध कस्तो हुन्थ्यो ? कारणसहित लेख्नुहोस् ।
 (If set P = {e, s}, what will be the relation between set P and Q? Write with reason.)[1HA]
- 
    उपयुक्त समूहलाई परिभाषित गर्नुहोस् । (Define proper subset.)[1K]
 A proper subset of a set is a subset that contains some, but not all, elements of the original set. In other words, if \( A \) is a proper subset of \( B \), then \( A \subseteq B \) and \( A \neq B \).
 For example, \( \{a, r\} \) is a proper subset of \( \{a, r, e\} \).
- 
    यो कुन समूह हो जुन सबै समूहहरूको उपसमूह हो ?
 (What is the set which is subset of every set?)[1U]
 The empty set, denoted \( \emptyset \), is a subset of every set.
- 
    यदि समूह P = {e, s} भएको भए, समूहहरू P र Q बीचको सम्बन्ध कस्तो हुन्थ्यो ? कारणसहित लेख्नुहोस् ।
 (If set P = {e, s}, what will be the relation between set P and Q? Write with reason.)[1HA]
 If \( P = \{e, s\} \) and \( Q = \{a, r, t\} \), then (\( P \cap Q = \emptyset \)), so the sets \( P \) and \( Q \) are disjoint sets.
 
- सर्वव्यापक समूह \( U = \{1, 2, 3, 4, 5\} \) का दुईओटा उपसमूहहरू \( D = \{1, 2, 3\} \) र \( E = \{3, 4, 5\} \) छन् ।
 (Two subsets of the universal set \( U = \{1, 2, 3, 4, 5\} \) are \( D = \{1, 2, 3\} \) and \( E = \{3, 4, 5\} \).)
- खप्टिएका समूहलाई परिभाषित गर्नुहोस् । Define overlapping sets.[1K]
-   D र E खप्टिएका वा अलगिएका कस्ता समूह हुन्, लेख्नुहोस् ।
 (Write common subsets of the sets D and E.)[1U]
- समूह D र E बाट कुन सदस्य हटाउँदा यी समूहहरू अलगिएका समूह बन्छन् ?
 (Which element of set D and set E should be removed to make them disjoint sets?)[1HA]
- 
    खप्टिएका समूहलाई परिभाषित गर्नुहोस् । (Define overlapping sets.)[1K]
 Overlapping sets are sets that have at least one common element. In other words, if two sets \( A \) and \( B \) are overlapping, then their intersection is not empty, i.e., \( A \cap B \neq \emptyset \).
 
- 
    D र E खप्टिएका वा अलगिएका कस्ता समूह हुन्, लेख्नुहोस् ।
 (Write common subsets of the sets D and E.)[1U]
 The common elements of \( D = \{1, 2, 3\} \) and \( E = \{3, 4, 5\} \) are \( D \cap E = \{3\} \). So,
 D and E are overlaping sets.
- 
    समूह D र E बाट कुन सदस्य हटाउँदा यी समूहहरू अलगिएका समूह बन्छन् ?
 (Which element of set D and set E should be removed to make them disjoint sets?)[1HA]
 Sets \( D = \{1, 2, 3\} \) and \( E = \{3, 4, 5\} \) have a common element, \( 3 \), since \( D \cap E = \{3\} \). So, removing the element \( 3 \) from either \( D \) or \( E \) makes them disjoint sets.
- सँगै दिइएको भेनचित्र अध्ययन गरी तलका प्रश्नहरूको उत्तर दिनुहोस् ।
 (Study the given Venn diagram, then answer the following questions.)
- कस्ता समूहहरूलाई अलगिएका समूह भनिन्छ ? लेख्नुहोस् ।
 (What type of sets are disjoint sets? Write.)[1K]
- समूह R का सबै एक सदस्यिय उपसमूहहरू लेख्नुहोस् ।
 (Write all subsets of set R with single elements.)[1U]
- कुन अवस्थामा दिइएका समूहहरू R र S अलगिएका समूह बन्छन् ?
 (In what condition, the given sets R and S become disjoint sets?)[1HA]
- 
    कस्ता समूहहरूलाई अलगिएका समूह भनिन्छ ? (What type of sets are disjoint sets? Write.)[1K]
 Disjoint sets are sets that have no common elements. In other words, if two sets \( A \) and \( B \) are disjoint, then their intersection is empty, i.e., \( A \cap B = \emptyset \).
- 
    समूह R का सबै एक सदस्यिय उपसमूहहरू लेख्नुहोस् ।
 (Write all subsets of set R with single elements.)[1U]
 From the Venn diagram, set \( R = \{a, b\} \). The single-element subsets of \( R \) are:
 \( \{a\}, \{b\} \).
- 
    कुन अवस्थामा दिइएका समूहहरू R र S अलगिएका समूह बन्छन् ?
 (In what condition, the given sets R and S become disjoint sets?)[1HA]
 From the Venn diagram, \( R = \{a, b\} \) and \( S = \{a,b,c, d\} \), with \( R \cap S = \{a, b\} \). To make \( R \) and \( S \) disjoint, R must not contain any elements from \( S = \{a,b,c, d\} \), it can contain elements from \( \{e, f\}\).
-  A = {x : x ≤ 3, x ∈ N} र B = {y : y ≤ 4, y ∈ N} सर्वव्यापक समूह U = {z : z ≤ 6, z ∈ W} का उपसमूहहरू हुन् ।
 (A = {x : x ≤ 3, x ∈ N} and B = {y : y ≤ 4, y ∈ N} are subsets of the universal set U = {z : z ≤ 6, z ∈ W}.)
- समूहहरू A, B र U लाई सूचीकरण विधिबाट लेख्नुहोस् ।
 (Write the sets A, B and U in listing method.)[1A]
- समूहहरू A र B का दुई सदस्यिय साझा उपसमूहहरू लेख्नुहोस् ।
 (Write all the common subsets of set A and B with two elements.)[1U]
- समूह B को कुन सदस्य हटाउँदा A र B एकअर्काको अनुपयुक्त उपसमूह बन्छन् ?
 (Which element of set B is to be removed so that they become improper subset of A and B each other?)[1HA]
- Natural numbers (N) start from 1, and whole numbers (W) include 0.
 \( A = \{x : x \leq 3, x \in \mathbb{N}\} = \{1, 2, 3\} \)
 \( B = \{y : y \leq 4, y \in \mathbb{N}\} = \{1, 2, 3, 4\} \)
 \( U = \{z : z \leq 6, z \in \mathbb{W}\} = \{0, 1, 2, 3, 4, 5, 6\} \)
- Common elements of \( A \) and \( B \): \( A \cap B = \{1, 2, 3\} \)
 All 2-element subsets of this intersection are the common 2-element subsets of both \( A \) and \( B \), which are
 \( \{1, 2\} \)
 \( \{1, 3\} \)
 \( \{2, 3\} \)
- Currently, \( A = \{1, 2, 3\} \) and \( B = \{1, 2, 3, 4\} \).
 For \( A \) and \( B \) to be improper subsets of each other, the element \( 4 \) must be removed from set \( B \)
- एउटा भेनचित्र दिइएको छ । (A Venn diagram is given.)
- कस्तो समूहलाई दिइएको समूहको उपसमूह भनिन्छ ? लेख्नुहोस् ।
 (What type of set is called subset of the given set? Write it.)[1K]
- समूहहरू A, B र U बीच कस्तो सम्बन्ध छ ? लेख्नुहोस् ।
 (What is the relation between sets A, B and U? Write it.)[1U]
- समूहहरू A र B लाई बराबर समूह बनाउन, समूह A बाट कुन कुन सदस्यहरू हटाउनुपर्छ ?
 (To make sets A and B equal, which elements of set A are to be removed?)[1HA]
- 
    कस्तो समूहलाई दिइएको समूहको उपसमूह भनिन्छ ? (What type of set is called subset of the given set? Write it.)[1K]
 A set is called a subset of a given set if all its elements are also elements of the given set. In other words, if every element of set \( A \) is contained in set \( B \), then \( A \subseteq B \)
- 
    समूहहरू A, B र U बीच कस्तो सम्बन्ध छ ? लेख्नुहोस् ।
 (What is the relation between sets A, B and U? Write it.)[1U]
 From the Venn diagram, \( U = \{a, b, c, d, e, f\} \), \( A = \{a, b, c, d\} \), and \( B = \{a, b\} \). Since all elements of \( A \) and \( B \) are in \( U \), and all elements of \( B \) are in \( A \), the relations are follows.
 \( B \subseteq A \) and \( A \subseteq U \), \( B \subseteq U \).
- 
    समूहहरू A र B लाई बराबर समूह बनाउन, समूह A बाट कुन कुन सदस्यहरू हटाउनुपर्छ ?
 (To make sets A and B equal, which elements of set A are to be removed?)[1HA]
 From the Venn diagram, \( A = \{a, b, c, d\} \) and \( B = \{a, b\} \). To make \( A \) equal to \( B \), the elements \( c \) and \( d \) must be removed from \( A \)
- एउटा भेनचित्र दिइएको छ । (A Venn diagram is given.)
- P र Q खण्डिएका वा अलगिएका कस्ता समूह हुन् ? कारणसहित लेख्नुहोस् ।
 (What types of sets are the sets P and Q — overlapping or disjoint sets? Write with reason.)[1K]
- समूह P का सबै उपसमूहहरू लेख्नुहोस् ।
 (Write all subsets of set P.)[1U]
- समूहहरू P र Q समूह U का कस्ता उपसमूहहरू हुन्, कारणसहित लेख्नुहोस् ।
 (What type of subsets of set U are the sets P and Q? Write with reason.)[1K]
- From the Venn diagram, set \( P = \{x, y\} \) and set \( Q = \{w, z\} \).
 There is no overlapping region with common elements between \( P \) and \( Q \).
 Since \( P \cap Q = \emptyset \), sets \( P \) and \( Q \) are disjoint sets.
- Set \( P = \{x, y\} \) has 2 elements.
 All subsets of \( P \) are:
 \( \emptyset, \{x\}, \{y\}, \{x, y\} \)
- From the diagram:
 Universal set \( U = \{x, y, w, z, u, v\} \)
 \( P = \{x, y\} \subset U \) and \( Q = \{w, z\} \subset U \)
 Therefore, both \( P \) and \( Q \) are proper subsets of \( U \), because all their elements are in \( U \) and neither equals \( U \).
- सर्वव्यापक समूह \( U = \) {6 भन्दा साना प्राकृतिक सङ्ख्याहरू} का दुईओटा उपसमूहहरू \( A =\) {6  भन्दा साना जोर सङ्ख्याहरू} र \( B =\) {6  भन्दा साना रूढ सङ्ख्याहरू}  छन् ।
 (Two subsets of the universal set \( U = \{\text{Natural numbers less than } 6\} \) are \( A = \{\text{Even numbers less than } 6\} \) and \( B = \{\text{Prime numbers less than } 6\} \).)
- समूहहरू U, A र B लाई सूचीकरण विधिमा लेख्नुहोस् ।
 (Write the sets U, A and B in listing method.)[1A]
- माथिका समूहहरूलाई भेनचित्रमा देखाउनुहोस् ।
 (Represent the above sets in Venn diagram.)[1U]
- समूह A का सबै उपसमूहहरू लेख्नुहोस् ।
 (Write all subsets of set A.)[1U]
- 
    समूहहरू U, A र B लाई सूचीकरण विधिमा लेख्नुहोस् । (Write the sets U, A and B in listing method.)[1A]
 The sets are
 \( U = \{1, 2, 3, 4, 5\} \)
 \( A = \{2, 4\} \)
 \( B = \{2, 3, 5\} \)
- 
    माथिका समूहहरूलाई भेनचित्रमा देखाउनुहोस् ।
 (Represent the above sets in Venn diagram.)[1U]
 The venn-diagram is
 
- 
    समूह A का सबै उपसमूहहरू लेख्नुहोस् ।
 (Write all subsets of set A.)[1U]
 Set \( A = \{2, 4\} \) has 2 elements, so it has \( 2^2 = 4 \) subsets.
 So, the subsets are
 \( \emptyset, \{2\}, \{4\}, \{2, 4\} \).
- एउटा भेनचित्र दिइएको छ । (A Venn diagram is given.)
- कुनै समूह र यसको अनुपयुक्त उपसमूहको सम्बन्ध कति हुन्छ ?
 (What is the relation of a set to its improper subset?)[1K]
- समूह U का जम्मा कति ओटा उपसमूह निर्माण गर्न सकिन्छ ?
 (How many subsets of set U can be constructed?)[1U]
- समूहहरू R र S लाई अलगिएका समूह बनाउन समूह S बाट कुन कुन सदस्यहरू हटाउनुपर्छ ?
 (Which elements of set S are to be removed to make the sets R and S disjoint sets?)[1HA]
- 
    कुनै समूह र यसको अनुपयुक्त उपसमूहको सम्बन्ध कति हुन्छ ? (What is the relation of a set to its improper subset?)[1K]
 An improper subset of a set is the set itself. Thus, the relation of a set to its improper subset is equality, i.e., if \( A \) is a set, its improper subset is \( A \), so \( A = A \).
- 
    समूह U का जम्मा कति ओटा उपसमूह निर्माण गर्न सकिन्छ ?
 (How many subsets of set U can be constructed?)[1U]
 From the Venn diagram, \( U = \{a, b, c, d, e, f, g\} \) has 7 elements. The number of subsets of a set with \( n \) elements is \( 2^n \).
 Thus, \( 2^7 = 128 \) subsets can be constructed from set \( U \).
- 
    समूहहरू R र S लाई अलगिएका समूह बनाउन समूह S बाट कुन कुन सदस्यहरू हटाउनुपर्छ ?
 (Which elements of set S are to be removed to make the sets R and S disjoint sets?)[1HA]
 From the Venn diagram, \( R = \{a, b, c\} \), \( S = \{b, c, d\} \), and their intersection is \( R \cap S = \{b, c\} \). To make \( R \) and \( S \) disjoint, \( b \) and \( c \) must be removed from \( S \).
- सर्वव्यापक समूह \( U =\) {7 भन्दा साना पूर्ण सङ्ख्याहरू} का दुईओटा उपसमूहहरू \( A =\) {x : x  एउटा विषम सङ्ख्या हो}  र \( B =\) {y : y एउटा रूढ सङ्ख्या हो}  छन् ।
 (Two subsets of the universal set \( U = \{\text{whole numbers less than } 7\} \) are \( A = \{x : x \text{ is an odd number}\} \) and \( B = \{y : y \text{ is a prime number}\} \).)
- उपसमूहलाई परिभाषित गर्नुहोस् । Define subset.[1K]
- माथि दिइएका समूहहरूलाई भेनचित्रमा देखाउनुहोस् ।
 (Show the above sets in Venn diagram.)[1U]
- समूहहरू A र B खण्डिएका वा अलगिएका कस्ता समूह हुन् ? कारणसहित लेख्नुहोस् ।
 (What type of sets are A and B — disjoint or overlapping? Write with reason.)[1HA]
- A set \( X \) is called a subset of another set \( Y \) if every element of \( X \) is also an element of \( Y \).
 It is denoted by \( X \subseteq Y \).
- Here
 Whole numbers less than 7: \( U = \{0, 1, 2, 3, 4, 5, 6\} \)
 Odd numbers: \( A = \{1, 3, 5\} \)
 Prime numbers: \( B = \{2, 3, 5\} \)
 Common elements: \( 3 \) and \( 5 \)
 The venn diagram is as below.
- Since \( A \cap B = \{3, 5\} \neq \emptyset \), sets \( A \) and \( B \) are overlapping sets.
Set (Questions)
By
MEAN
 
No comments:
Post a Comment