Subset
Let the universal set be
\(U = \{ \text{apple}, \text{banana}, \text{mango}, \text{orange}, \text{grape} \}\)
Let set \( A \) be the set of fruits given as
\(A = \{ \text{apple}, \text{mango}, \text{grape} \}\)
Then \(U\) is universal set, and \( A\) is subset.
Subset
यसलाई \( A \subset B \) भनेर लेखिन्छ र “ \( B \) को उपसमुह \( A \) ” भनेर पढिन्छ।
जस्तै: यदि \( A = \{1, 2, 3\}, B = \{3, 4, 5,6\} \) र \( C = \{1, 2, 3, 4, 5\} \) छन् भने
\( A \subset C \) तर \( B \not\subset C \).(चित्र 1 र 2 हेर्नुहोस्)
In the system of real numbers, with usual notation, the relation between sets are given as
\(\mathbb{N} \subset \mathbb{W} \subset \mathbb{Z} \subset\mathbb{Q} \subset \mathbb{R}\).
Define each of the set \(\mathbb{N} , \mathbb{W}, \mathbb{Z} ,\mathbb{Q} , \mathbb{R}\) with one example on each.
- \(\mathbb{N}\)
Example: \(5\) - \(\mathbb{W}\)
Example: \(0\) - \(\mathbb{Z}\)
Example: \(-3\) - \(\mathbb{Q}\)
Example: \(\frac{2}{3}\) - \(\mathbb{R}\)
Example: \(\sqrt{2}\) - The Venn-diagram of \(\mathbb{N} , \mathbb{W}, \mathbb{Z} ,\mathbb{Q} , \mathbb{R}\) are given below.
Proper and Improper Subset
- उपयुक्त उपसमुह (Proper subset)
यदि \( A \subset B \) र \( A \ne B \) भने \( A \) लाई \( B \) को उपयुक्त उपसमुह भनिन्छ। यस अवस्थामा, \( B \) लाई \( A \) को सुपर समुह भनिन्छ।
a set B which contains elements from A but, not all, is called proper subset of A
If \(B=\{1, 5, 8, 9, 10\}\) , then proper subset of B are
Number of Elements Subsets Count 0 ∅ 1 1 {1}, {5}, {8}, {9}, {10} 5 2 {1, 5}, {1, 8}, {1, 9}, {1, 10}, {5, 8}, {5, 9}, {5, 10}, {8, 9}, {8, 10}, {9, 10} 10 3 {1, 5, 8}, {1, 5, 9}, {1, 5, 10}, {1, 8, 9}, {1, 8, 10}, {1, 9, 10}, {5, 8, 9}, {5, 8, 10}, {5, 9, 10}, {8, 9, 10} 10 4 {1, 5, 8, 9}, {1, 5, 8, 10}, {1, 5, 9, 10}, {1, 8, 9, 10}, {5, 8, 9, 10} 5 Total Subsets 32 - अनुपयुक्त उपसमुह (Improper subset)
समुहको परिभाषाबाट परम्परागत रूपमा नै, शून्य समुह र समुह आफैंलाई अनुपयुक्त उपसमुह पनि भनिन्छ। त्यसैले, यदि \( A \subset B \) र \( A = B \) भएमा \( A \) लाई \( B \) को अनुपयुक्त उपसमुह भनिन्छ। यसलाई \( A \subseteq B \) ले जनाईन्छ।
a set B which contains all elements of A, is called improper subset of A
If\(B=\{1, 5, 8, 9, 10\}\), then improper subset of B is
\(B=\{1, 5, 8, 9, 10\}\)
- शून्य समुह \( \phi \) प्रत्येक समुहको उपसमुह हो।
- प्रत्येक समुहको (खाली समुह बाहेक) कम्तीमा दुईवटा उपसमुहहरू हुन्छन्।
- \( n \) वटा सदस्य भएको समुहको सम्भावित उपसमुहहरु \( 2^n \) वटा हुन्छ, जसको समुहलाई Power Set भनिन्छ।
If \(A=\{a,e,i,o,u\}\), then
- find all subsets consisting no element
\(\{\}\) or \(\phi\) - find all subsets consisting 1 element
\(\{a\}, \{e\}, \{i\}, \{o\}, \{u\}\) - find all subsets consisting 2 elements
\(\{a,e\}, \{a,i\}, \{a,o\}, \{a,u\}, \{e,i\}, \{e,o\}, \{e,u\}, \{i,o\}, \{i,u\}, \{o,u\}\) - find all subsets consisting 3 elements
10 subsets, e.g., \(\{a,e,i\}, \{a,e,o\}, \dots\)) - find all subsets consisting 4 elements
5 subsets, e.g., \(\{a,e,i,o\}, \{a,e,i,u\}, \dots\))
If \(A=\{a\}, B=\{a,b\}, C=\{a,b,c\}, D=\{a,b,c,d\}\), then
- find all subsets of \(A\)
Number of Elements Subsets Count 0 ∅ 1 1 {a} 1 Total Subsets 2 - find all subsets of \(B\)
Number of Elements Subsets Count 0 ∅ 1 1 {a}, {b} 2 2 {a, b} 1 Total Subsets 4 - find all subsets of \(C\)
Number of Elements Subsets Count 0 ∅ 1 1 {a}, {b}, {c} 3 2 {a, b}, {a, c}, {b, c} 3 3 {a, b, c} 1 Total Subsets 8 - find all subsets of \(D\)
16 subsets
Number of Elements Subsets Count 0 ∅ 1 1 {a}, {b}, {c}, {d} 4 2 {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} 6 3 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} 4 4 {a, b, c, d} 1 Total Subsets 16 - fill up the table given below
| Set | number of elements | number of subsets | total subsets \(2^{n}\) |
|---|---|---|---|
| \(A\) | 1 | 2 | \(2^1 = 2\) |
| \(B\) | 2 | 4 | \(2^2 = 4\) |
| \(C\) | 3 | 8 | \(2^3 = 8\) |
| \(D\) | 4 | 16 | \(2^4 = 16\) |
Let \( N = \{x : x \text{ is counting number up to } 5\} \). Express set \( N \) by the listing method. Make the following subsets from the given set and name them.
\(N = \{1, 2, 3, 4, 5\}\)
- Subset that has only one element.
e.g., \(\{1\}\) - Subset that has two elements.
e.g., \(\{1,2\}\) - Subset that has three elements.
e.g., \(\{1,2,3\}\) - Subset that has four elements.
e.g., \(\{1,2,3,4\}\) - Subset that has five elements.
\(\{1,2,3,4,5\}\) - Subset having no elements (empty set).
\(\phi\) - Write the number of subsets formed from the given set \( N \).
\(2^5 = 32\)
How Many Subsets? Quiz
Given the set below, how many total subsets does it have?
Power Set
कुनै एक समुह \( S \) को सबै सम्भावित उपसमुहहरूको समुहलाई \( S \) को Power Set भनिन्छ। यसलाई \( P(S) \) द्वारा जनाइन्छ। जस्तै, यदि \( S = \{a, b, c\} \) भने\( P(S) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\} \)।
जसमा
- \( n(P(S)) = 2^{n(S)} \)
- \( S \in P(S) \)
No comments:
Post a Comment